• Title/Summary/Keyword: Molecular Spectroscopy

Search Result 822, Processing Time 0.033 seconds

Absorbtion Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

  • Ajloo, Davood;Ghadamgahi, Maryam;Shaheri, Freshte;Zarei, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1440-1448
    • /
    • 2014
  • Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 ${\mu}M$ in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and $65^{\circ}C$ and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation.

The Formation of Metal (M=Co(II), Ni(II), and Cu(II)) Complexes by Aminosilanes Immobilized within Mesoporous Molecular Sieves

  • 박동호;박성수;최상준
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.291-296
    • /
    • 1999
  • The immobilization of APTMS(3-(2-aminoethylamino)propyltrimethoxysilane) and AAPTMS(3-(2-(2-aminoethyl)aminoethylanino)propyltrimethoxysilane) on the surface of high quality mesoporous molecular sieves MCM-41 and MCM-48 have been confirmed by F.T.-IR spectroscopy, Raman spectroscopy, 29Si solid state NMR, and a surface polarity measurement using Reichardt's dye. The formation of metal (Co(Ⅱ), Ni(Ⅱ), and Cu(Ⅱ)) complexes by immobilized aminosilanes have been investigated by photoacoustic spectroscopy(PAS). The assignment of UV-Vis. PAS bands makes it possible to identify the structure of metal complexes within mesoporous molecular sieves. Co(Ⅱ) ion may be coordinated mainly in a tetrahedral symmetry by two APTMS onto MCM-41, and in an octahedral one by two AAPTMS. Both Ni(Ⅱ) and Cu(Ⅱ) coordinated by aminosilanes within MCM-41 form possibly the octahedral complexes such as [Ni(APTMS)2(H20)2]2+, [Ni(AAPTMS)2]2+, [Cu(APTMS)2(H2O)2]2+, and [Cu(AAPTMS)(H2O)3]2+, respectively. The PAS band shapes of complexes onto MCM-48 are similar to those of corresponding MCM-41 with the variation of PAS intensity. Most of metal ion(Ⅱ) within MCM-41 and MCM-48 are coordinated by aminosilanes without the impregnation on the surface.

Sensing and Identification of Health Hazardous Molecular Components using Surface-Enhanced Raman Spectroscopy: A Mini Review

  • Pratiksha P. Mandrekar;Moonjin Lee;Tae-Sung Kim;Daejong Yang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.259-266
    • /
    • 2023
  • The use of various adulterants and harmful chemicals is rapidly increasing in various sectors such as agriculture, food, and pharmaceuticals, and they are also present in our surroundings in the form of pollutants. The regular and repeated intake of harmful chemicals often adversely affects human health. The prolonged exposure of living beings to such adverse components can lead to severe health complications. To avoid the unlimited utilization of these chemical components, a sensing technology that is sensitive and reliable for low-concentration detection is beneficial. Surface-enhanced Raman spectroscopy (SERS) is a powerful method for identifying low-range concentrations of analytes, leading to great applications in molecular identification, including various diagnostic biomarkers. SERS in chemical, gas, and biological sensors can be an excellent approach in the sensing world to achieve rapid and multiple-analyte detection, leading to a new and efficient approach in healthcare monitoring.

Raman Detection of Protein Interfacial Conformations

  • Jang, Mi-Jin;Cho, Il-Young;Callahan, Patricia
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.352-355
    • /
    • 1997
  • The surface adsorbed protein conformations onto the vaccine adjuvants were observed with a Raman spectroscopy by using the maximum adsorption conditions described previously. The adsorbed state Raman vibrational spectra and subsequent spectral analysis display no conformational changes for BSA or IgG relative to their native species in solution.

  • PDF

Infrared Spectroscopic Study of Molecular Hydrogen Bonding in Chiral Smetic Liquid Crystal

  • Jang, Won-Gun
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • We utilize Fourier transform infrared (IR) spectroscopy to probe intramolecular hydrogen bonding in $smectic-C^{\ast}$ liquid crystal phases. Infrared spectra of aligned smectic liquid crystal materials vs. temperature and of isotropic liquid crystal mixtures vs. concentration were measured in homologs, both with and without hydrogen bonding. Hydrogen bonding significantly changes the direction and magnitude of the vibrational dipole transition moments, causing marked changes in the IR dichroic absorbance profiles of hydrogen bonded molecular subfragments. A GAUSSIAN94 computation of the directions, magnitudes, and frequencies of the vibrational dipole moments of molecular subfragments shows good agreement with the experimental data. The results show that IR dichroism can be an effective probe of hydrogen bonding in liquid crystal phases.

  • PDF

Solution State Structure of pA1, the Mimotopic Peptide of Apolipoprotein A-I, by NMR Spectroscopy

  • Kim, Hyo-Joon;Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3425-3428
    • /
    • 2011
  • Apolipoprotein A-I (Apo A-I) is a major component for high density lipoproteins (HDL). A number of mimetic peptides of Apo A-I were screened from the phase-displayed random peptide library by utilizing monoclonal antibodies (A12). Mimetic peptide for A12 epitope against Apo A-I was selected as CPFARLPVEHHDVVGL (pA1). From the BLAST search, the mimetic peptide pA1 had 40% homology with Apo A-I. As a result of the structural determination of this mimotope using homo/hetero nuclear 2D-NMR techniques and NMR-based distance geometry (DG)/molecular dynamic (MD) computations, DG structure had low penalty value of 0.3-0.7 ${\AA}^2$ and the total RMSD was 0.6-1.6 ${\AA}$. The mimotope pA1 exhibited characteristic conformation including a ${\beta}$-turn from Pro[7] to His[11].

Electronic Structure and Bonding Configuration of Histidine on Ge(100)

  • Lee, Han-Gil;Youn, Young-Sang;Yang, Se-Na;Jung, Soon-Jung;Kim, Se-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3217-3220
    • /
    • 2010
  • The electronic structures and bonding configuration of histidine on Ge(100) have been investigated with various sample treatments using core-level photoemission spectroscopy (CLPES). Interpretation of the Ge 3d, C 1s, N 1s, and O 1s core level spectra being included in these systems revealed that both the imino nitrogen in the imidazole ring and the carboxyl group in the glycine moiety concurrently participate in the adsorption of histidine on a Ge(100) surface at 380 K. Moreover, we could clearly confirm that the imino nitrogen with a free lone pair in the imidazole group adsorbs on Ge(100) more strongly than the carboxyl group in the glycine moiety by examining systems annealed at various temperatures.

Raman Spectroscopy Studies of Graphene Nanoribbons and Chemical Doping in Graphene

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.15-15
    • /
    • 2011
  • Atom-thick graphene membrane and nano-sized graphene objects (NGOs) hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. To realize this potential, chemical properties of graphene need to be understood and diagnostic methods for various NGOs are also required. To meet these needs, chemical properties of graphene and optical diagnostics of graphene nanoribbons (GNRs) have been explored by Raman spectroscopy, AFM and STM scanning probes. The first part of the talk will illustrate the role of underlying silicon dioxide substrates and ambient gases in the ubiquitous hole doping of graphene. An STM study reveals that thermal annealing generates out-of-plane deformation of nanometer-scale wavelength and distortion in $sp^2$ bonding on an atomic scale. Graphene deformed by annealing is found to be chemically active enough to bind molecular oxygen, which leads to a strong hole-doping. The talk will also introduce Raman spectroscopy studies of GNRs which are known to have nonzero electronic bandgap due to confinement effect. GNRs of width ranging from 15 nm to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by upshifted G band and strong disorder-related D band originating from scattering at ribbon edges. Detailed analysis of the G, D, and 2D bands of GNRs proves that Raman spectroscopy is still a reliable tool in characterizing GNRs despite their nanometer width.

  • PDF

Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer

  • Lim, Hee Seon;Kim, Sehun;Kim, Jeong Won
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.351-356
    • /
    • 2014
  • The electronic structure at organic-organic interface gives essential information on device performance such as charge transport and mobility. Especially, the molecular orientation of organic material can affect the electronic structure at interface and ultimately the device performance in organic photovoltaics. The molecular orientation is examined by the change in ionization potential (IP) for metal phthalocyanines (MPc, M=Zn, Cu)/fullerene ($C_{60}$) interfaces on ITO by adding the CuI templating layer through ultraviolet photoelectron spectroscopy measurement. On CuPc/$C_{60}$ bilayer, the addition of CuI templating layer represents the noticeable change in IP, while it hardly affects the electronic structure of ZnPc/$C_{60}$ bilayer. The CuPc molecules on CuI represent relatively lying down orientation with intermolecular ${\pi}-{\pi}$ overlap being aligned in vertical direction. Consequently, in organic photovoltaics consisting of CuPc and $C_{60}$ as donor and acceptor, respectively, the carrier transport along the direction is enhanced by the insertion of CuI templaing layer. In addition, optical absorption in CuPc molecules is increased due to aligned transition matrix elements. Overall the lying down orientation of CuPc on CuI will improve photovoltaic efficiency.

Solubilization of Pyrimethamine, Antibacterial Drug, by Low-Molecular-Weight Succinoglycan Dimers Isolated from Shinorhizobium meliloti

  • Kim, Hwan-Hee;Kim, Kyoung-Tea;Choi, Jae-Min;Tahir, Muhammad Nazir;Cho, Eun-Ae;Choi, Young-Jin;Lee, Im-Soon;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2731-2736
    • /
    • 2012
  • The use of pyrimethamine as antibacterial drug is limited by the poor solubility. To enhance its solubility, we prepared complexes of pyrimethamine with low-molecular-weight succinoglycan isolated from Sinorhizobium meliloti. Low-molecular-weight succinoglycans are monomers, dimers, and trimers of the succinoglycan repeating unit. The monomers and dimers were separated into their three species (M1, M2, and M3) and four fractions (D1 to D4) using chromatographic techniques, which were shown to be nontoxic. The solubility of pyrimethamine was markedly increased up to 42 fold by succinoglycan D3, where the level of its solubility enhancement was even 8-20 fold higher comparing with cyclodextrin or its derivatives. The complex formation of succinoglycan D3 with pyrimethamine was confirmed by $^1H$ nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and molecular modeling studies. Herein, we suggest that the low-molecular-weight succinoglycans may be utilized as highly effective solubilizers of pyrimethamine for pharmaceutical purposes.