DOI QR코드

DOI QR Code

Sensing and Identification of Health Hazardous Molecular Components using Surface-Enhanced Raman Spectroscopy: A Mini Review

  • Pratiksha P. Mandrekar (Department of Future Convergence Engineering, Kongju National University) ;
  • Moonjin Lee (Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Tae-Sung Kim (Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Daejong Yang (Department of Future Convergence Engineering, Kongju National University)
  • Received : 2023.07.20
  • Accepted : 2023.08.30
  • Published : 2023.09.30

Abstract

The use of various adulterants and harmful chemicals is rapidly increasing in various sectors such as agriculture, food, and pharmaceuticals, and they are also present in our surroundings in the form of pollutants. The regular and repeated intake of harmful chemicals often adversely affects human health. The prolonged exposure of living beings to such adverse components can lead to severe health complications. To avoid the unlimited utilization of these chemical components, a sensing technology that is sensitive and reliable for low-concentration detection is beneficial. Surface-enhanced Raman spectroscopy (SERS) is a powerful method for identifying low-range concentrations of analytes, leading to great applications in molecular identification, including various diagnostic biomarkers. SERS in chemical, gas, and biological sensors can be an excellent approach in the sensing world to achieve rapid and multiple-analyte detection, leading to a new and efficient approach in healthcare monitoring.

Keywords

Acknowledgement

This work was supported by the "Basic Science Research Program (2020R1I1A3073681)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE), and the "Korea Institute of Marine Science & Technology Promotion (KIMST) Program (00254781)", funded by the Ministry of Oceans and Fisheries, Korea.

References

  1. J. L. C. M. Dorne and J. Fink-Gremmels, "Human and animal health risk assessments of chemicals in the food chain: comparative aspects and future perspectives", Toxicol. Appl. Pharmcol., Vol. 270, No. 3, pp. 187-195, 2013. https://doi.org/10.1016/j.taap.2012.03.013
  2. P. Mohindroo, K. S. Varma, J. Bhagat, Y. Zala, S. Kadam, and J. Sarvaiya, "A rapid pesticide detection approach in food forensics using hyphenated technology of TLC-electronic nose", Food and Humanity., Vol. 1, pp. 188-198, 2023. https://doi.org/10.1016/j.foohum.2023.05.014
  3. S. Mandal, R. Poi, D. K. Hazra, I. Ansary, S. Bhattacharyya, and R. Karmakar, "Review of extraction and detection techniques for the analysis of pesticide residues in fruits to evaluate food safety and make legislative decisions: Challenges and anticipations", J. Chromatogr. B, Vol. 1215, p. 123587, 2023.
  4. Y. Wang, Y. Fu, Y. Wang, Q. Lu, H. Ruan, J. Luo, and M. Yang, "A comprehensive review on the pretreatment and detection methods of neonicotinoid insecticides in food and environmental samples", Food Chem.: X, Vol. 15, pp. 100375(1)-100375(4), 2022.
  5. A. Parven, Md. S. Islam Khan, M. D. H. Prodhan, K. Venkateswarlu, M. Megharaj, and I. Md. Meftaul, "Human health risk assessment through quantitative screening of insecticide residues in two green beans to ensure food safety", J. Food Compost. Anal., Vol. 103, p. 104121, 2021.
  6. M. Elfiky and N. Salahuddin, "Advanced sensing platform for nanomolar detection of food preservative nitrite in sugar byproducts based on 3D mesoporous nanorods of montmorillonite/TiO2-ZnO hybrids", Microchem. J., Vol. 170, p. 106582, 2021.
  7. S. Dey and B. H. Nagababu, "Applications of food color and bio-preservatives in the food and its effect on the human health", Food Chem. Adv., Vol. 1, pp. 100019(1)-100019(13), 2022.
  8. S. I. S. Al-Hawary, A. O. Bali, S. Askar, H. A. Lafta, Z. J. Kadhim, B. Kholdorov, Y. Riadi, R. Solanki, Q Kadhem, and Y. F. Mustafa, "Recent advances in nanomaterials-based electrochemical and optical sensing approaches for detection of food dyes in food samples: a comprehensive overview", Microchem. J., Vol. 189, p. 108540, 2023.
  9. B. Monisha, R. Sridharan, P. S. Kumar, G. Rangasamy, V. G. Krishnaswamy, and S. Subhashree, "Sensing of azo toxic dyes using nanomaterials and its health effects -a review", Chemosphere, Vol. 313, p. 137614, 2023.
  10. L. Zhou, M. M. Anwar, M. Zahid, V. Shostrom, and S. S. Mirvish, "Urinary excretion of N-nitroso compounds in rats fed sodium nitrite and/or hot dogs", Chem. Res. Toxicol., Vol. 227, No. 10, pp. 1669-1674, 2014.
  11. M. Eskandani, H. Hamishehkar, and J. E. N. Dolatabadi, "Cytotoxicity and DNA damage properties of tert-butylhydroquinone (TBHQ) food additive", Food Chem., Vol. 153, pp. 315-320, 2014. https://doi.org/10.1016/j.foodchem.2013.12.087
  12. J. W. Zagorski, A. E. Turley, R. A. Freeborn, K. R. VanDenBerg, H. E. Dover, B. R. Kardell, K. T. Liby, and C. E. Rockwell, "Differential effects of the Nrf2 activators tBHQ and CDDO-Im on the early events of T cell activation", Biochem. Pharmacol., Vol. 147, pp. 67-76, 2018. https://doi.org/10.1016/j.bcp.2017.11.005
  13. Q. Pan, Q. Liu, J. Zheng, Y. Li, S. Xiang, X. Sun, and X. He, "Volatile and semi-volatile organic compounds in landfill gas: composition characteristics and health risks", Environ. Int., Vol. 174, pp. 107886(1)-107886(9), 2023.
  14. F. Lucernoni, L. Capelli, and S. Sironi, "Comparison of different approaches for the estimation of odour emissions from landfill surfaces", Waste Manag., Vol. 63, pp. 345-353, 2017. https://doi.org/10.1016/j.wasman.2016.09.041
  15. M. Hajikhani, Y. Zhang, X Gao, and M. Lin, "Advances in CRISPR-based SERS detection of food contaminants: a review", Trends Food Sci. Technol., Vol. 138, pp. 615-627, 2023. https://doi.org/10.1016/j.tifs.2023.07.001
  16. H. H. Mantsch, L. Choo-Smith, and R. A. Shaw, "Vibrational spectroscopy and medicine: an alliance in making", Vib. Spectrosc., Vol. 30, No. 1, pp. 31-41, 2002. https://doi.org/10.1016/S0924-2031(02)00036-X
  17. R. Gillibert, J. Q. Huang, Y. Zhang, W. L. Fu, and M. L. de la Chapelle, "Explosive detection by surface enhanced Raman scattering", Trend. Anal. Chem., Vol. 105, pp. 166-172, 2018. https://doi.org/10.1016/j.trac.2018.03.018
  18. W. A. Hassanain, E. L. Izake, M. S. Schmidt, and G. A. Ayoko, "Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids", Biosens. Bioelctron., Vol. 91, pp. 664-672, 2017. https://doi.org/10.1016/j.bios.2017.01.032
  19. Y. H. Lee, W. Shi, H. K. Lee, R. Jiang, I. Y. Phang, Y. Cui, L. Isa, Y. Yang, J. Wang, S. Li, and X. Y. Ling, "Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices", Nat. Commun., Vol. 6, No. 1, pp. 6990(1)-6990(7), 2015.
  20. C. Tsai, J. Lin, C. Wu, P. Lin, T. Lu, and P. Lee, "Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode", Nano. Lett., Vol. 12, No.3, pp. 1648-1654, 2012. https://doi.org/10.1021/nl300012m
  21. N. Hooshmand, J. A. Bordley, and M. A. El-Sayed "Are Hot Spots between Two plasmonic nanocubes of silver or gold formed between adjacent corners or adjacent facets? a DDA examination", J. Phys. Chem. Lett., Vol. 5, No.13, pp. 2229-2234, 2014. https://doi.org/10.1021/jz500673p
  22. M. M. Joseph, N. Narayanan, J. B. Nair, V. Karunakaran, A. N. Ramya, P. T. Sujai, G. Saranya, J. S. Arya, V. M. Vijayan, and K. K. Maiti, "Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications", Biomaterials, Vol. 181, pp. 140-181, 2018. https://doi.org/10.1016/j.biomaterials.2018.07.045
  23. F. Sun, H. Hung, A. Sinclair, P. Zhang, T. Bai, D. D. Galvan, P. Jain, B. Li, S. Jiang, and Q. Yu, "Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma", Nat. Commun., Vol. 7, No. 1, pp. 13437(1)-13437(9), 2016.
  24. T. Xuan, Y. Gao, Y. Cai, X. Guo, Y. Wen, and H. Yang, "Fabrication and characterization of the stable Ag-Au-metal-organic frameworks: an application for sensitive detection of thiabendazole", Sens. Actuators B Chem., Vol. 293, pp. 289-295, 2019. https://doi.org/10.1016/j.snb.2019.05.017
  25. Z. Wang, C. Ma, Y. Wu, J. Gu, C. Zhu, L. Li, H. Gao, Z. Yang, X. Li, Y. Wei, G. Wang, S. Guo and, G. Chen, "A sensitive method for detecting sodium thiocyanate using AgNPs and MIL-101(Fe) combined as SERS substrate", Vib. Spectrosc., Vol. 117, p. 103311, 2021.
  26. A. Zhu, T. Xuan, Y. Zhai, Y. Wu, X. Guo, Y. Ying, Y. Wen, and H. Yang, "Preparation of magnetic metal organic framework: a magnetically induced improvement effect for detection of parathion-methyl", Sens. Actuators B Chem., Vol. 339, p. 129909, 2021.
  27. Y. Cai, Y. Wu, T. Xuan, X. Guo, Y. Wen, and H. Yang, "Core-shell Au@metal-organic frameworks for promoting Raman detection sensitivity of methenamine", Appl. Mater. Interfaces., Vol. 10, No. 18, pp. 15412-15417, 2018. https://doi.org/10.1021/acsami.8b01765
  28. L. Wu, H. Pu, L. Huang, and D. Sun, "Plasmonic nanoparticles on metal-organic framework: a versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food", Food Chem., Vol. 328, p. 127105, 2020.
  29. P. P. Mandrekar, M. Kang, I. Park, B. Kim, and D. Yang, "Cost-effective and facile fabrication of a tattoo paper-based SERS substrate and its application in pesticide sensing on fruit surfaces", Nanomaterials, Vol. 13, No.3, pp. 486(1)-486(11), 2023.
  30. X. Kong, Y. Xi, P. le Duff, X. Chong, E. Li, F. Ren, G. L. Rorrer, and A. X. Wang, "Detecting explosive molecules from nanoliter solution: a new paradigm of SERS sensing on hydrophilic photonic crystal biosilica", Biosens. Bioelctron., Vol. 88, pp. 63-70, 2017. https://doi.org/10.1016/j.bios.2016.07.062
  31. V. Longo, A. Forleo, A. V. Radogna, P. Siciliano, T. Notari, S. Pappalardo, M. Piscopo, L. Montano, and S. Capone, "A novel human biomonitoring study by semiconductor gas sensors in exposomics: investigation of health risk in contaminated sites", Environ. Pollut., Vol. 304, p. 119119, 2022.
  32. A. Mirzaei, S.G. Leonardi, and G. Neri, "Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review", Ceram. Int., Vol. 42, No. 14, pp. 15119-15141, 2016. https://doi.org/10.1016/j.ceramint.2016.06.145
  33. V. Ambardekar, T. Bhowmick, P. P. Bandyopadhyay and, S. B. Majumder, "Ethanol and acetone sensing properties of plasma sprayed copper oxide coating", J. Phys. and Chem. Solid, Vol. 160, p. 110333, 2022.
  34. S. Parmar, B. Ray, S. Vishwakarma, S. Rath, and S. Datar, "Polymer modified quartz tuning fork (QTF) sensor array for detection of breath as a biomarker for diabetes", Sens. Actuators B Chem., Vol. 358, p. 131524, 2022.
  35. C. L. Wong, U. S. Dinish, M. S. Schmidt, and M. Olivo, "Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs)", Anal. Chim. Acta, Vol. 844, pp. 54-60, 2014. https://doi.org/10.1016/j.aca.2014.06.043
  36. L. Xu, J. Ma, D. Chen, C. Gu, J. Zhou, and T. Jiang, "Brush-like gold nanowires-anchored g-C3N4 nanosheets with tunable geometry for ultrasensitive and regenerative SERS detection of gaseous molecules", Spectrochim. Acta Part A: Mol. Biomol., Vol. 283, p. 121732, 2022.
  37. M. Lafuente, I. Pellejero, V. Sebastian, M. A. Urbiztondo, R. Mallada, M. P. Pina, and J. Santamaria, "Highly sensitive SERS quantification of organophosphorous chemical warfare agents: a major step towards the real time sensing in the gas phase", Sens. Actuators B Chem., Vol. 267, pp. 457-466, 2018. https://doi.org/10.1016/j.snb.2018.04.058
  38. S. Emamian, A. Eshkeiti, B. B. Narakathu, S. G. R. Avuthu, and M. Z. Atashbar, "Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2,4-dinitrotoluene (DNT) vapor", Sens. Actuators B Chem., Vol. 217, pp. 129-135, 2015. https://doi.org/10.1016/j.snb.2014.10.069
  39. P. Claus, T. Cattenoz, S. Landaud, S. Chaillou, A. Peron, G. Coeuret, S. Slimani, T. Livache, Y. Demarigny, and D. Picque, "Discrimination of spoiled beef and salmon stored under different atmospheres by an optoelectronic nose. Comparison with GC-MS measurements", Future Foods, Vol. 5, pp. 100106(1)-100106(8), 2022.
  40. J. Chen, L. Guo, L. Chen, B. Qiu, G. Hong, and Z. Lin, "Sensing of hydrogen sulfide gas in the Raman-silent region based on gold nano-bipyramids (Au NBPs) encapsulated by zeolitic imidazolate framework-8", ACS Sens., Vol. 5, No. 12, pp. 3964-3970, 2020. https://doi.org/10.1021/acssensors.0c01659
  41. H. Kim, B. T. Trinh, K. H. Kim, J. Moon, H. Kang, K. Jo, R. Akter, J. Jeong, E. Lim, J. Jung, H. Choi, H. G. Park, O. S. Kwon, I. Yoon, and T. Kang, "Au@ZIF-8 SERS paper for food spoilage detection", Biosens. Bioelctron., Vol. 179, pp. 113063(1)-113063(8), 2021.
  42. L. Chen, H. Gua, F. Sassa, B. Chen, and K. Hayashi, "SERS gas sensors based on multiple polymer films with high design flexibility for gas recognition", Sensors, Vol. 21, pp. 5546, 2021.
  43. Y. Wang, B. Yan, and L. Chen, "SERS tags: novel optical nanoprobes for bioanalysis", Chem. Rev., Vol. 113, No. 3, pp. 1391-1428, 2013. https://doi.org/10.1021/cr300120g
  44. M. Yin, B. Gu, Q. An, C. Yang, Y. L. Guan, and K. Yong, "Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications", Coord. Chem. Rev., Vol. 376, pp. 348-392, 2018. https://doi.org/10.1016/j.ccr.2018.08.001
  45. M. Yin, Z. Li, T. Lv, K. Yong, and Q. An, "Low-voltage driven flexible organic thin-film transistor humidity sensors", Sens. Actuators B Chem., Vol. 339, p. 129887, 2021.
  46. J. Cao, Y. Zhai, W. Tang, X. Guo, Y. Wen, and H. Yang, "ZnO tips dotted with Au nanoparticles-advanced SERS determination of trace nicotine", Biosensors, Vol. 11, No. 11, pp. 465(1)-465(10), 2021. https://doi.org/10.3390/bios11110465
  47. Y. Huang, Y. Gu, X. Liu, T. Deng, S. Dai, J. Qu, G. Yang, and L. Qu, "Reusable ring-like Fe3O4/Au nanozymes with enhanced peroxidase-like activities for colorimetric-SERS dual-mode sensing of biomolecules in human blood", Biosens. Bioelctron., Vol. 209, p. 114253, 2022.
  48. S. Atta and T. Dinh, "Ultra-trace SERS detection of cocaine and heroin using bimetallic gold-silver nanostars (BGNS-Ag)", Anal. Chimi. Acta, Vol. 1251, pp. 340956(1)-340956(10), 2023.
  49. Z. Cheng, H. Li, C. Chen, X. Lv, E. Zuo, X. Xie, Z. Li, P. Liu, H. Li, and C. Chen, "Application of serum SERS technology based on thermally annealed silver nanoparticle composite substrate in breast cancer", Photodiagnosis Photodyn. Ther., Vol. 41, p. 103284, 2023.
  50. N. Choi, H. Dang, A. Das, M. S. Sim, I. Y. Chung, and J. Choo, "SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells", Biosens. Bioelctron., Vol. 164, p. 112326, 2020.
  51. C. Qiu, W. Zhang, Y. Zhou, H. Cui, Y. Xing, F. Yu, and R. Wang, "Highly sensitive surface-enhanced Raman scattering (SERS) imaging for phenotypic diagnosis and therapeutic evaluation of breast cancer", Chem. Eng. J., Vol. 459, pp. 141502(1)-141502(9), 2023.
  52. L. Li, M. Liao, Y. Chen, B. Shan, and M. Li, "Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells", J. Mater. Chem. B, Vol. 7, No. 5, pp. 815-822, 2019.  https://doi.org/10.1039/C8TB02828A