• Title/Summary/Keyword: Molecular Spectroscopy

Search Result 827, Processing Time 0.027 seconds

Synthesis of Liquid Crystalline Spiroxazine Derivatives

  • Cui, Jian-Zhong;Kim, Jae-Ho;Kim, Sung-Hoon
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.117-121
    • /
    • 2001
  • Liquid crystalline spiroxazine derivatives have been synthesized. The spiroxazines obtained were characterized by H-NMR, IR spectroscopy, UV and GC-MS.

  • PDF

Enhancement of Dissolution from Pharmaceutical Preparation of Hydrophobic Drugs ( I ) -Characteristics of Sulpiride-Polyethylene Glycol Coprecipitates-

  • Ku, Young-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.12 no.4
    • /
    • pp.145-152
    • /
    • 1982
  • Data from IR spectroscopy and X-ray diffractometry were used for the characterization of sulpiride polyethylene glycol coprecipitates related with polymorphism of sulpiride. Sulpiride Form II transformed to Form I during coprecipitating with polyethylene glycol and the transformation rate is increased in proportion to molecular size of polyethylene glycol and the content of polyethylene glycol in coprecipitate.

  • PDF

Naltriben Analogues as Peptide Anticancer Drugs

  • Kim, Min-Woo;Shin, Choon-Shik;Yang, Hee-Jung;Kim, Seung-Hyun;Lim, Hae-Young;Lee, Chul-Hoon;Kim, Min-Kyun;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.881-884
    • /
    • 2004
  • Apoptosis inducers for cancer therapy have been studied. Among hundreds of inducers, peptide anticancer drugs have many advantages such as being not harmful to humans, high selectivity, and dependence on their structures. Naltriben (NTB) is an octapeptide consisting of DPhe-Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-$NH_2$. Several NTB analogues are known. In this experiment, apoptotic activities of NTB analogues with 8 amino acids were tested using flow cytometry. The conformational study of NTB was carried out using NMR spectroscopy and molecular modeling. Here, the relationships between conformations of NTB analogues and their apoptotic effects are reported.

Meaning and Definition of Partial Charges (부분 전하의 의미와 정의)

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • Partial charge is an important and fundamental concept which can explain many aspects of chemistry. Since a molecule can be regarded as neclei surrounded by electron cloud, there is no way to define a partial charge accurately. Nevertheless, there have been many attempts to define these seemingly impossible parameters, since they would facilitate the understanding of molecular properties such as molecular dipole moment, solvation, hydrogen bonding, molecular spectroscopy, chemical reaction, etc. Common methods are based on the charge equalization, orbital occupancy, charge density, and electric multipole moments, and electrostatic potential fitting. Methods based on the charge equalization using electronegativity are very fast, and therefore they have been used to study many compounds. Methods to subdivide orbital occupancy using basis set conversion, relies on the notion that molecular orbitals are composed of atomic orbitals. The main idea is to reduce overlap integral between two nuclei using converted orthogonal basis sets. Using some quantum mechanical observables like electrostatic potential or charge multipole moments. Using potential grids obtained from wavefunction, partial charges can be fitted. these charges are most useful to describe intermolecular electrostatic interactions. Methods to using dipole moment and its derivatives, seems to be sensitive the level of theory, Dividing electron density using density gradient being the most rigorous theoretically among various schemes, bears best potential to describe the charge the most adequately in the future.

Molecular Size Fractionation of Soil Fulvic Acid by Gel Filtration Chromatography and Analysis of Their Fluorescence Characteristics (겔 여과 크로마토그래피에 의한 토양 풀빅산의 분자량 분획 및 형광특성 분석)

  • Chung, Kun-Ho;Shin, Hyun-Sang;Lee, Wanno;Cho, Yeong-Hyun;Choi, Geun-Sik;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • The molecular size distribution and fluorescence properties of soil fulvic acids (FA) were characterized by using gel filtration chromatography (GFC) and luminescence spectroscopy. The objectives of this work were to fractionate the FA extracted from a forest soil into different nominal molecular size using GFC system and to characterize the fluorescence properties (excitation, emission and synchronous) of these fractions using luminescence spectrometer. The GFC column was calibrated with polyethylene glycols, acetone and dextrane Blue. The total permeation volume of the GFC system was 404 mL and the void volume 130 mL. The GFC molecular weight of the soil FA was in the range of 190~8,900 Dalton and the molecular weight at the peak on the chromatogram was 930 Dalton. The fluorescence intensity ratio ($I_{498nm}/I_{390nm}$) was found to be increased with an increasing molecular weight. This results may suggest that the fulvic acid fractions with high molecular weight have large amount of the condensed aromatic compound.

Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing

  • Alessandra M.R.C.B. de Oliveira;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.451-460
    • /
    • 2023
  • Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles. Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters. Results: The results showed that the spectral structural carbohydrates spectral peak area (ca. 1,487.8 to 1,190.8 cm-1) was the carbohydrate structure that was most significant when related to various carbohydrate parameters of canola meals (p<0.05, r>0.50). And spectral total carbohydrate area (ca. 1,198.5 to 934.3 cm-1) was most significant when studying the various carbohydrate parameters of canola seeds (p<0.05, r>0.50). The spectral amide structures (ca. 1,721.2 to 1,480.1 cm-1) were related to a few chemical and nutrient profiles, Cornell Net Carbohydrate and Protein System (CNCPS) fractions, truly absorbable nutrient supply based on the Dutch protein system (DVE/OEB), and NRC systems, and intestinal in vitro protein-related parameters in co-products (canola meals). Besides the spectral amide structures, α-helix height (ca. 1,650.8 to 1,643.1 cm-1) and β-sheet height (ca. 1,633.4 to 1,625.7 cm-1), and the ratio between them have shown to be related to many protein-related parameters in feedstock (canola oil seeds). Multi-regression analysis resulted in moderate to high R2 values for some protein related equations for feedstock (canola seeds). Protein related equations for canola meals and carbohydrate related equations for canola meals and seeds resulted in weak R2 and low p values (p<0.05). Conclusion: In conclusion, the attenuated total reflectance Fourier transform infrared spectroscopy vibrational molecular spectroscopy can be a useful resource to predict carbohydrate and protein-relates nutritional aspects of canola seeds and meals.