• Title/Summary/Keyword: Molecular Simulation

Search Result 837, Processing Time 0.04 seconds

Theoretical Study of PDP Materials

  • Miyamoto, Akira;Onuma, Hiroaki;Kikuchi, Hiromi;Tsuboi, Hideyuki;Koyama, Michihisa;Endou, Akira;Takaba, Hiromitsu;Kubo, Momoji;Carpio, Carlos A.Del;Selvam, Parasuraman;Kajiyama, Hiroshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.121-124
    • /
    • 2006
  • A novel quantum chemical molecular dynamics program, 'Colors' was developed to simulate the electronic structure of rare earth-doped phosphor materials as well as the destruction processes of MgO protecting layer in plasma display panel (PDP). We have also developed a quantitative prediction method based on Monte Carlo simulation technique to evaluate the electrical conductivity of insulators, semiconductors, and metals as well as the spatial distribution of electron density by Colors code. All these original simulators enable us to study theoretically a variety of materials related to PDP.

  • PDF

Electronic State of ZnO Doped with Elements of IIIB family, Calculated by Density functional Theory (범밀도함수법을 이용하여 계산한 IIIB족 원소가 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Min, Bok-Ki;Kim, In-Sung;Song, Jae-Sung;Kim, Yang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.589-593
    • /
    • 2005
  • The electronic states of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, were calculated using the density functional theory. In this study, the calculation was performed by two Programs; the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method; Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The fundamental mixed orbital structure in each energy level near the Fermi level was investigated with simple model using DV-Xa. The optimized crystal structures calculated by VASP were compared to the measured structures. The density of state and the energy levels of dopant elements were shown and discussed in association with properties.

Ion Transport and High Frequency Dielectric of the Hollandite Nax$(Ti_{8-x}Cr_x)O_{16}$ (Hollandite Nax$(Ti_{8-x}Cr_x)O_{16}$의 이온 전송과 고유전율 특성)

  • Yun, Ju-Ho;Li, Ying;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.241-242
    • /
    • 2008
  • The Velocity Autocorrelation Function (VAF) of the sodium ions is calculated for a range of temperature from 250K to 1000K and converted into the linear ac-conductivity and ac-susceptibility response via Fourier transformation. A peak is found in the conductivity around $6\times10^{12}$ Hz that has some of the character of a Poley absorption. Here it is shown to be due to an harmonically coupled site vibrations of the sodium atoms, which extend only over a limited range. At frequencies below the peak the conductivity tends towards a constant i.e. dc value corresponding to a constant flow of ions through the simulation cell. At high temperatures the conductivity due to this ion transport process behaves like a metal with an insulator to metal transition occurring around a specific temperature.

  • PDF

Model Simulations for the Dust-Scattered Far-Ultraviolet in the Orion-Eridanus Superbubble

  • Jo, Young-Soo;Min, Kyoung-Wook;Lim, Tae-Ho;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.73.1-73.1
    • /
    • 2012
  • We present the results of dust scattering simulations carried out for the Orion Eridanus Superbubble region by comparing them with observations made in the far-ultraviolet. The albedo and the phase function asymmetry factor (g-factor) of interstellar grains were estimated as well as the distance and thickness of the dust layers. The results are: 0.39-0.45 for the albedo and 0.25-0.65 for the g-factor, in good agreement with previous determinations and theoretical predictions. The distance of the assumed single dust layer, modeled for the Orion Molecular Cloud Complex, was estimated to be -110 pc and the thickness ranged from -130 at the core to -50 pc at the boundary for the region of the present interest, implying that the dust cloud is located in front of the Superbubble. The simulation result also indicates that a thin (-10 pc) dust shell surrounds the inner X-ray cavities of hot gas at a distance of -70-90 pc.

  • PDF

Characterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism

  • Davies, Oluwafemi;Mendes, Pedro;Smallbone, Kieran;Malys, Naglis
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.259-264
    • /
    • 2012
  • Accumulation of modified nucleotides is defective to various cellular processes, especially those involving DNA and RNA. To be viable, organisms possess a number of (deoxy)nucleotide phosphohydrolases, which hydrolyze these nucleotides removing them from the active NTP and dNTP pools. Deamination of purine bases can result in accumulation of such nucleotides as ITP, dITP, XTP and dXTP. E. coli RdgB has been characterised as a deoxyribonucleoside triphosphate pyrophosphohydrolase that can act on these nucleotides. S. cerevisiae homologue encoded by YJR069C was purified and its (d)NTPase activity was assayed using fifteen nucleotide substrates. ITP, dITP, and XTP were identified as major substrates and kinetic parameters measured. Inhibition by ATP, dATP and GTP were established. On the basis of experimental and published data, modelling and simulation of ITP, dITP, XTP and dXTP metabolism was performed. (d)ITP/(d)XTPase is a new example of enzyme with multiple substrate-specificity demonstrating that multispecificity is not a rare phenomenon

THE CHARACTERISTICS OF HEAT TRANSFER AND CHEMICAL REACTION FOR THERMAL CRACKING OF ETHANE IN TUBULAR REACTOR (에탄 열분해 반응이 동반된 관형 반응기에서의 열전달 및 화학반응 특성 연구)

  • Shin, C.Y.;Ahn, J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • Thermal cracking is commonly modeled as plug flow reaction, neglecting the lateral gradients present. In this paper, 2-dimensional computational fluid dynamics including turbulence model and molecular reaction scheme are carried out. This simulation is solved by means of coupled implicit scheme for stable convergence of solution. The reactor is modeled as an isothermal tube, whose length is 1.2 m and radius is 0.01 m, respectively. At first, The radial profile of velocity and temperature at each point are predicted in its condition. Then the bulk temperature and conversion curve along the axial direction are compared with other published data to identify the reason why discussed variations of properties are important to product yield. Finally, defining a new non-dimensional number, Effect of interaction with turbulence, heat transfer and chemical reaction are discussed for design of thermal cracking furnace.

A Study for Separation of $CH_4$ and $CO_2$ from Biogas (바이오가스의 $CH_4$, $CO_2$의 분리방법 연구)

  • Lee, Taek-Hong;Kim, Jae-Young;Chang, Sae-Hun;Lee, Hyo-Suk;Choi, Ik-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2010
  • This paper is studying the selective separation of methane and carbon dioxide which are the main ingredients of biogas. Adsorption performance of molecular sieve 13x for carbon dioxide seems to be reasonable. In this experiments carbon dioxide contains about 3~5 ppm of methane and it is impossible to obtain high purity carbon dioxide. Applying the low temperature technique, it is possible to separate methane and carbon dioxide from bio gas. PRO II simulation shows results a small change of liquefaction temperatures and no difference with the used thermodynamic models. Applying low temperature technique, It is possible to separate carbon dioxide and methane from biogas.

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

Systems Biology - A Pivotal Research Methodology for Understanding the Mechanisms of Traditional Medicine

  • Lee, Soojin
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.11-18
    • /
    • 2015
  • Objectives: Systems biology is a novel subject in the field of life science that aims at a systems' level understanding of biological systems. Because of the significant progress in high-throughput technologies and molecular biology, systems biology occupies an important place in research during the post-genome era. Methods: The characteristics of systems biology and its applicability to traditional medicine research have been discussed from three points of view: data and databases, network analysis and inference, and modeling and systems prediction. Results: The existing databases are mostly associated with medicinal herbs and their activities, but new databases reflecting clinical situations and platforms to extract, visualize and analyze data easily need to be constructed. Network pharmacology is a key element of systems biology, so addressing the multi-component, multi-target aspect of pharmacology is important. Studies of network pharmacology highlight the drug target network and network target. Mathematical modeling and simulation are just in their infancy, but mathematical modeling of dynamic biological processes is a central aspect of systems biology. Computational simulations allow structured systems and their functional properties to be understood and the effects of herbal medicines in clinical situations to be predicted. Conclusion: Systems biology based on a holistic approach is a pivotal research methodology for understanding the mechanisms of traditional medicine. If systems biology is to be incorporated into traditional medicine, computational technologies and holistic insights need to be integrated.

A Systems Approach to Immune Response for Cancer Treatment (암 치료를 위한 면역반응의 체계적인 연구)

  • ;Ronald R.Mohier
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.181-188
    • /
    • 1992
  • This paper provides an overview of system analysis of immunology. The theoretical research in this area is aimed at an understanding of the precise manner by which the immune system controls Infec pious diseases, cancer, and AIDS. This can provide a systematic plan for immunological experimentation by means of an integrated program of immune system analysis, mathematical modeling and computer simulation. Biochemical reactions and cellular fission are naturally modeled as nonlinear dynamical processes to synthesize the human immune system! as well as the complete organism it is intended to protect. A foundation for the control of tumors is presented, based upon the formulation of a realistic, knowledge based mathematical model of the interaction between tumor cells and the immune system. Ordinary bilinear differential equations which are coupled by such nonlinear term as saturation are derived from the basic physical phenomena of cellular and molecular conservation. The parametric control variables relevant to the latest experimental data are also considered. The model consists of 12 states, each composed of first-order, nonlinear differential equations based on cellular kinetics and each of which can be modeled bilinearly. Finally, tumor control as an application of immunotherapy is analyzed from the basis established.

  • PDF