• Title/Summary/Keyword: Molecular Separation

Search Result 487, Processing Time 0.03 seconds

Monitoring of phase separation between silk fibroin and sericin using various dye system

  • Kwak, Hyo Won;Lee, Ki Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Understanding the interactions between fibroin and sericin is crucial in solving the mechanism of silk spinning. In this study, various commercially available dyes were used to monitor the interface between fibroin and sericin during the gelation of fibroin. The phase separation between fibroin and sericin could be observed by the addition of azo dyes over a certain molecular weight. Furthermore, the addition of the dyes to the sericin layer showed vivid phase separation over addition to the fibroin layer.

Chiral Separation with DNA-Polyion Complex Membranes

  • Yoshikawa, Masakazu;Maruhashi, Motokazu;Ogata, Naoya
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.353-353
    • /
    • 2006
  • Deoxyribonucelic acid (DNA) molecules have a huge molecular weight so that DNA was reported to be a promising natural polymer to give durable films. Among many applications of DNA, the authors focused their attention on separation membranes derived from DNA because membranes will play an important role in environmental and energy related processes. DNA-polyion complex membranes were prepared from DNA and corresponding polycations. The DNA-polyion complex membranes showed chiral separation ability toward racemic amino acid mixtures.

  • PDF

Rejection Properties of Aromatic Pesticides by a Hollow Fiber NF Membrane (중공사 나노여과막을 이용한 방향족 농약의 배제 특성)

  • Jung, Yong-Jun;Kiso, Yoshiaki;Park, Soon-Gil;Kim, Jong-Yong;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.296-300
    • /
    • 2004
  • The rejection properties of 6 aromatic pesticides were evaluated by a continuous flow system equipped with a hollow fiber NF membrane. Different from the separation experiment of batch cell, the rejection and the removal could be calculated exactly because the concentration of feed, permeate and retentate was separately obtained. The lowest and the highest rejection were found in carbaryl(54.8%) and methoxychlor(99.2%), respectively, and the removals were always shown higher than rejections. This may be caused by some reasons such as the solute adsorption on the membrane, the variation of feed concentration. Although molecular weight, molecular width regarded as solute characteristics and log P(n-octanol/water partition coefficient) as hydrophobicity could be applied to explain the rejection property, these factors should be considered together for better analysis. According to the higher relationship between log B(solute permeability) and molecular weight, it was revealed that the solute separation with this membrane was influenced more by molecular weight.

Microporous Ceramic Membrane and Its Gas Separation Performance

  • Li, Lin;Li, Junhui;Qi, Xiwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.16-19
    • /
    • 1996
  • Separation with synthetic membrane have become increasingly important processes in many fields. In the most application of membrane process, polymer membrane is used. the main advantage of polymers as a material for membrane preparation is the relative simplicity of this film formation which enables one to obtain rather high permeability rates. However, polymeric membranes have several limitations, such as high temperature instability, swelling and decomposition in organic solvent, et. al.. These limitations can be overcome by inorganic membrane. At the present time, commercially available inorganic membranes have pore diameters ranging 5nm to 50mm, and the predominant flow regime in such membrane is Knudsen diffusion. Since the Knudsen permeability is directly proportional to the molecular velocity, gases can be separated due to their molecular masses. However, this separation mechanism is only of important for light gases such as H2 and He. Other separation mechanisms like surface diffusion, active diffusion can play an important role only with very small pore diameters(2nm) and give rise to large permselectivities. Therefore, preparation of inorganic membrane with nano-sized pore have been attracting more and more attention.

  • PDF

Recent trends in studies of biomolecular phase separation

  • Kim, Chan-Geun;Hwang, Da-Eun;Kumar, Rajeev;Chung, Min;Eom, Yu-Gon;Kim, Hyunji;Koo, Da-Hyun;Choi, Jeong-Mo
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.363-369
    • /
    • 2022
  • Biomolecular phase separation has recently attracted broad interest, due to its role in the spatiotemporal compartmentalization of living cells. It governs the formation, regulation, and dissociation of biomolecular condensates, which play multiple roles in vivo, from activating specific biochemical reactions to organizing chromatin. Interestingly, biomolecular phase separation seems to be a mainly passive process, which can be explained by relatively simple physical principles and reproduced in vitro with a minimal set of components. This Mini review focuses on our current understanding of the fundamental principles of biomolecular phase separation and the recent progress in the research on this topic.

Functional Polymers with Controlled Molecular Architecture: Design, Synthesis and Applications

  • Frechet Jean M.J.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.1-2
    • /
    • 2006
  • Polymer architecture plays a great role in determining the properties of functional polymers. This lecture will explore the design and the synthesis of polymers with controlled architecture and functionality. Especially featured will be star and dendritic architectures where the functional group placement and the molecular shape can be controlled. This will be followed by examples of applications illustrated with a few model systems of functional polymers designed for use in areas such as organic electronics, catalysis, surface patterning, separation and molecular recognition, and polymer therapeutics.

  • PDF

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

Analysis of Double-Stranded DNA Fragments by Capillary Electrophoresis Using Entangle Polymer Solutions in Uncoated Fused Silica Capillary Columns

  • Lee, Jong-Jin;Lee, Kong-Joo
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.384-390
    • /
    • 1998
  • DNA fragments (51-587 bp) were separated by capillary electrophoresis using entangled polymer, hydroxyethylcellulose, in uncoated fused silica capillary columns. The factors affecting the separation of DNA fragments with hydroxyethylcellulose media were evaluated, i.e., the concentration of buffer and entangled polymer, effects of additives (methanol, ethidium bromide, EDTA), temperature, and injection methods. Maximum performance was obtained by adding 5% methanol in 0.5% hydroxyethylcellulose solution at $30^{\circ}C$. Addition of methanol in polymer media increased the resolution of small size DNA fragments (< 100 bp). On the other hand, addition of ethidium bromide and EDTA, which are commonly used in conventional DNA separation, reduced the resolution of DNA fragments in the polymer solution. It turns out that the separation behavior of DNA in entangled polymer is more sensitive to the running condition compared to that in polyacrylamide gel-filled capillary, but the reproducibility of DNA separation in entangled polymer is reliable.

  • PDF

Rich Phase Separation Behavior of Biomolecules

  • Shin, Yongdae
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.6-15
    • /
    • 2022
  • Phase separation is a thermodynamic process leading to the formation of compositionally distinct phases. For the past few years, numerous works have shown that biomolecular phase separation serves as biogenesis mechanisms of diverse intracellular condensates, and aberrant phase transitions are associated with disease states such as neurodegenerative diseases and cancers. Condensates exhibit rich phase behaviors including multiphase internal structuring, noise buffering, and compositional tunability. Recent studies have begun to uncover how a network of intermolecular interactions can give rise to various biophysical features of condensates. Here, we review phase behaviors of biomolecules, particularly with regard to regular solution models of binary and ternary mixtures. We discuss how these theoretical frameworks explain many aspects of the assembly, composition, and miscibility of diverse biomolecular phases, and highlight how a model-based approach can help elucidate the detailed thermodynamic principle for multicomponent intracellular phase separation.