Isomer separation of some chiral flavonoids and
β-blockers using microbial cyclosphoraoses and their
sulfated derivatives as novel chiral additives in capillary
electrophoresisX

Heylin Park2, Simook Kang2, Eunae Cho1 Chanho Kwon1,
Sanghoo Lee2 and Seunho Jung1,2

1Department of Microbial Engineering and 2Department of Advanced Technology
Fusion, Bio/molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
TEL: +82-2-450-3764, FAX: +82-2-3437-6106

Abstract

Neutral cyclosphoraoses and highly sulfated cyclosphoraoses (HS-Cys)
were used as chiral selectors for separation of some chiral flavonoids and β
-blockers in capillary electrophoresis. HS-Cys were synthesized by the chem-
ical modification of a family of neutral cyclosphoraoses isolated from soil
microorganism, Rhizobium meliloti 2011. The HS-Cys were analytically char-
acterized using fourier transform infrared spectroscopy and elemental
analysis. The five basic chiral compounds of β-blockers were successfully
separated with the resolution values ranging from 0.25 to 2.3 by HS-Cys in
low-pH aqueous background electrolytes. For separation of chiral flavonoids,
neutral cyclosphoraoses and HS-Cys were applied with sodium dodecyl sul-
fate (SDS) in micellar electrokinetic chromatography (MEKC). Chiral catechin
was separated with the resolution (RS) of 0.754 by neutral cyclosphoraoses
and SDS. In the case of isosakuranetin and neohesperidin, resolution (RS)
values of 1.483 and 1.306 were obtained with HS-Cys and SDS, respectively.
References