Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.8.101

Recent trends in studies of biomolecular phase separation  

Kim, Chan-Geun (Department of Chemistry, Pusan National University)
Hwang, Da-Eun (Department of Chemistry, Pusan National University)
Kumar, Rajeev (Department of Chemistry, Pusan National University)
Chung, Min (Department of Chemistry, Pusan National University)
Eom, Yu-Gon (Department of Chemistry, Pusan National University)
Kim, Hyunji (Department of Chemistry, Pusan National University)
Koo, Da-Hyun (Department of Chemistry, Pusan National University)
Choi, Jeong-Mo (Department of Chemistry, Pusan National University)
Publication Information
BMB Reports / v.55, no.8, 2022 , pp. 363-369 More about this Journal
Abstract
Biomolecular phase separation has recently attracted broad interest, due to its role in the spatiotemporal compartmentalization of living cells. It governs the formation, regulation, and dissociation of biomolecular condensates, which play multiple roles in vivo, from activating specific biochemical reactions to organizing chromatin. Interestingly, biomolecular phase separation seems to be a mainly passive process, which can be explained by relatively simple physical principles and reproduced in vitro with a minimal set of components. This Mini review focuses on our current understanding of the fundamental principles of biomolecular phase separation and the recent progress in the research on this topic.
Keywords
Biomolecular condensates; Biomolecular phase separation; Liquid-liquid phase separation (LLPS); Phase diagram; Stickers-and-spacers framework;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jia P, Li X, Wang X et al (2021) ZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarization. Nat Commun 12, 6535
2 Banani SF, Lee HO, Hyman AA and Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18, 285-298   DOI
3 Harmon TS, Holehouse AS, Rosen MK and Pappu RV (2017) Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294
4 Ryu JK, Hwang DE and Choi JM (2021) Current understanding of molecular phase separation in chromosomes. Int J Mol Sci 22, 10736
5 Banani SF, Rice AM, Peeples WB et al (2016) Compositional control of phase-separated cellular bodies. Cell 166, 651-663   DOI
6 Banjade S and Rosen MK (2014) Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123
7 Kroschwald S and Alberti S (2017) Gel or Die: phase separation as a survival strategy. Cell 168, 947-948   DOI
8 Sheu-Gruttadauria J and MacRae IJ (2018) Phase transitions in the assembly and function of human miRISC. Cell 173, 946-957.e916   DOI
9 Molliex A, Temirov J, Lee J et al (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133   DOI
10 Cho WK, Spille JH, Hecht M et al (2018) Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412-415   DOI
11 Boyko S and Surewicz WK (2022) Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol 32, 611-623   DOI
12 Alberti S and Dormann D (2019) Liquid-liquid phase separation in disease. Ann Rev Genet 53, 171-194   DOI
13 Brangwynne Clifford P, Tompa P and Pappu Rohit V (2015) Polymer physics of intracellular phase transitions. Nat Phys 11, 899-904   DOI
14 Hyman AA, Weber CA and Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30, 39-58   DOI
15 Dolgin E (2018) What lava lamps and vinaigrette can teach us about cell biology. Nature 555, 300-303   DOI
16 Wang J, Choi JM, Holehouse AS et al (2018) A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688-699.e616   DOI
17 Rubinstein M and Semenov AN (1998) Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31, 1386-1397   DOI
18 Huggins ML (1942) Theory of solutions of high polymers1. J Am Chem Soc 64, 1712-1719   DOI
19 Wippich F, Bodenmiller B, Trajkovska Maria G, Wanka S, Aebersold R and Pelkmans L (2013) Dual specificity kinase dyrk3 couples stress granule condensation/ dissolution to mTORC1 signaling. Cell 152, 791-805   DOI
20 Fujioka Y, Alam JM, Noshiro D et al (2020) Phase separation organizes the site of autophagosome formation. Nature 578, 301-305   DOI
21 Abbas M, Lipinski WP, Nakashima KK, Huck WTS and Spruijt E (2021) A short peptide synthon for liquid-liquid phase separation. Nat Chem 13, 1046-1054   DOI
22 Scott WA, Gharakhanian EG, Bell AG et al (2021) Active controlled and tunable coacervation using side-chain functional α-helical homopolypeptides. J Am Chem Soc 143, 18196-18203   DOI
23 Sato Y and Takinoue M (2022) Capsule-like DNA hydrogels with patterns formed by lateral phase separation of DNA nanostructures. J Am Chem Soc Au 2, 159-168
24 Agarwal A, Rai SK, Avni A and Mukhopadhyay S (2021) An intrinsically disordered pathological prion variant Y145Stop converts into self-seeding amyloids via liquid-liquid phase separation. Proc Natl Acad Sci U S A 118, e2100968118
25 Azaldegui CA, Vecchiarelli AG and Biteen JS (2021) The emergence of phase separation as an organizing principle in bacteria. Biophys J 120, 1123-1138   DOI
26 Grese ZR, Bastos AC, Mamede LD, French RL, Miller TM and Ayala YM (2021) Specific RNA interactions promote TDP-43 multivalent phase separation and maintain liquid properties. EMBO Rep 22, e53632
27 Shao W, Bi X, Pan Y et al (2022) Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol 18, 70-80   DOI
28 Li P, Banjade S, Cheng HC et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340   DOI
29 Fritsch AW, Diaz-Delgadillo AF, Adame-Arana O et al (2021) Local thermodynamics govern formation and dissolution of Caenorhabditis elegans P granule condensates. Proc Natl Acad Sci U S A 118, e2102772118
30 Hong K, Song D and Jung Y (2020) Behavior control of membrane-less protein liquid condensates with metal ion-induced phase separation. Nat Commun 11, 5554
31 Zbinden A, Perez-Berlanga M, De Rossi P and Polymenidou M (2020) Phase separation and neurodegenerative diseases: a disturbance in the force. Dev Cell 55, 45-68   DOI
32 Wang B, Zhang L, Dai T et al (2021) Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 6, 290-290   DOI
33 Lednev IK (2014) Amyloid fibrils: the eighth wonder of the world in protein folding and aggregation. Biophys J 106, 1433-1435   DOI
34 Bremer A, Farag M, Borcherds WM et al (2022) Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat Chem 14, 196-207   DOI
35 Malki A, Teulon J-M, Camacho-Zarco AR et al (2022) Intrinsically disordered tardigrade proteins self-assemble into fibrous gels in response to environmental stress. Angew Chem Int Ed 61, e202109961
36 Shen C, Li R, Negro R et al (2021) Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184, 5759-5774.e5720   DOI
37 Bergeron-Sandoval LP, Kumar S, Heris HK et al (2021) Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling. Proc Natl Acad Sci U S A 118, e2113789118
38 Perez-Schindler J, Kohl B, Schneider-Heieck K et al (2021) RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proc Natl Acad Sci U S A 118, e2105951118
39 Shi Y, Chen J, Zeng WJ et al (2021) Formation of nuclear condensates by the mediator complex subunit Med15 in mammalian cells. BMC Biol 19, 245
40 Zhang H, Ji X, Li P et al (2020) Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci 63, 953-985   DOI
41 Buchan JR and Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36, 932-941   DOI
42 Song D, Jo Y, Choi JM and Jung Y (2020) Client proximity enhancement inside cellular membrane-less compartments governed by client-compartment interactions. Nat Commun 11, 1-13   DOI
43 Ruff KM, Dar F and Pappu RV (2021) Ligand effects on phase separation of multivalent macromolecules. Proc Natl Acad Sci U S A 118, 10, e2017184118
44 Kim GH and Kwon I (2021) Distinct roles of hnRNPH1 low-complexity domains in splicing and transcription. Proc Natl Acad Sci U S A 118, e2109668118
45 Hallegger M, Chakrabarti AM, Lee FC et al (2021) TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184, 4680-4696. e4622   DOI
46 Sawner AS, Ray S, Yadav P et al (2021) Modulating α-synuclein liquid-liquid phase separation. Biochemistry 60, 3676-3696   DOI
47 Wurtz JD and Lee CF (2018) Chemical-reaction-controlled phase separated drops: formation, size selection, and coarsening. Phys Rev Lett 120, 078102
48 Babl L, Giacomelli G, Ramm B, Gelmroth AK, Bramkamp M and Schwille P (2022) CTP-controlled liquid-liquid phase separation of ParB. J Mol Biol 434, 167401
49 Zhu P, Lister C and Dean C (2021) Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 599, 657-661   DOI
50 Sun M, Jia M, Ren H et al (2021) NuMA regulates mitotic spindle assembly, structural dynamics and function via phase separation. Nat Commun 12, 7157
51 Hnisz D, Shrinivas K, Young RA, Chakraborty AK and Sharp PA (2017) A phase separation model for transcriptional control. Cell 169, 13-23   DOI
52 Palacio M and Taatjes DJ (2022) Merging established mechanisms with new insights: condensates, hubs, and the regulation of rna polymerase II transcription. J Mol Biol 434, 167216
53 Ishiguro A, Lu J, Ozawa D, Nagai Y and Ishihama A (2021) ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid-liquid phase separation and liquid-to-solid transition. J Biol Chem 297, 101284
54 Qi Y and Zhang B (2021) Chromatin network retards nucleoli coalescence. Nat Commun 12, 6824
55 Lee T, Do S, Lee JG, Kim DN and Shin Y (2021) The flexibility-based modulation of DNA nanostar phase separation. Nanoscale 13, 17638-17647   DOI
56 Shin Y and Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382
57 Lee R, Kang MK, Kim YJ et al (2022) CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates. Nucleic Acid Res 50, 207-226   DOI
58 Folkmann AW, Putnam A, Lee CF and Seydoux G (2021) Regulation of biomolecular condensates by interfacial protein clusters. Science 373, 1218-1224   DOI
59 Liu Q, Li J, Zhang W et al (2021) Glycogen accumulation and phase separation drives liver tumor initiation. Cell 184, 5559-5576.e5519   DOI
60 Long Q, Zhou Y, Wu H et al (2021) Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation. Nat Struct Mol Biol 28, 900-908   DOI
61 Feric M, Vaidya N, Harmon TS et al (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686-1697   DOI
62 Riback JA, Katanski CD, Kear-Scott JL et al (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028-1040.e1019   DOI
63 Xiao Q, McAtee CK and Su X (2022) Phase separation in immune signalling. Nat Rev Immunol 22, 188-199   DOI
64 Nicolas E, Parisot P, Pinto-Monteiro C, de Walque R, De Vleeschouwer C and Lafontaine DLJ (2016) Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat Commun 7, 11390
65 Wang B, Zhang L, Dai T et al (2021) Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 6, 290
66 Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10, 51-61   DOI
67 Martin EW, Holehouse AS, Peran I et al (2020) Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694-699   DOI
68 Choi J-M, Hyman AA and Pappu RV (2020) Generalized models for bond percolation transitions of associative polymers. Phys Rev E 102, 042403
69 Paloni M, Bailly R, Ciandrini L and Barducci A (2020) Unraveling molecular interactions in liquid-liquid phase separation of disordered proteins by atomistic simulations. J Phys Chem B 124, 9009-9016   DOI
70 Choi J-M, Holehouse AS and Pappu RV (2020) Physical principles underlying the complex biology of intracellular phase transitions. Annu Rev Biophys 49, 107-133   DOI
71 Fong K, Li Y, Wang W et al (2013) Whole-genome screening identifies proteins localized to distinct nuclear bodies. J Cell Biol 203, 149-164   DOI
72 Rhine K, Vidaurre V and Myong S (2020) RNA droplets. Annu Rev Biophys 49, 247-265   DOI
73 Roden C and Gladfelter AS (2021) RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 22, 183-195   DOI
74 Wei MT, Elbaum-Garfinkle S, Holehouse AS et al (2017) Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem 9, 1118-1125   DOI
75 Le Vay K, Song EY, Ghosh B, Tang TYD and Mutschler H (2021) Enhanced ribozyme-catalyzed recombination and oligonucleotide assembly in peptide-RNA condensates. Angew Chem Int Ed 60, 26096-26104   DOI