• Title/Summary/Keyword: Molecular Separation

Search Result 485, Processing Time 0.024 seconds

Comparison of Size-Exclusion Chromatography and Flow Field-Flow Fractionation for Separation of Whey Proteins

  • Kang, Da-Young;Moon, Jae-Mi;Lee, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1315-1320
    • /
    • 2011
  • Whey protein (WP) is a mixture of proteins, and is of high nutritional values. WP has become an important source of functional ingredients in various health-promoting foods. In this study, size-exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AsFlFFF) were used for separation and analysis of whey proteins. It was found that a lab-prepared WP from raw milk is mostly of ${\beta}$-lactoglobulin with small amount of higher molecular weight components, while a commercial whey protein isolate (WPI) powder contains relatively larger amount of components other than ${\beta}$-lactoglobulin, including IgG and protein aggregates. Results suggest that AsFlFFF provides higher resolution for the major whey proteins than SEC in their normal operation conditions. AsFlFFF could differentiate the BSA and Albumin, despite a small difference in their molecular weights, and also was able to separate much smaller amount of aggregates from monomers. It is noted that SEC was able to show the presence of low molecular weight components other than the major whey proteins in the WP samples, which AsFlFFF could not show, probably due to the partial loss of those low molecular weight species through the membrane.

Phase Separation of Lennard-Jones Particles Using Molecular Dynamics and Brownian Dynamics Simulations

  • Jeong, Ji-Yun;Lee, Ju-Min;Kim, Jun-Su
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.169-182
    • /
    • 2014
  • 이 연구에서는 Lennard-Jones (LJ) particle을 이용하여 상분리 현상을 이해하기 위한 컴퓨터 시뮬레이션 연구를 수행하였다. 초기에 균일하게 분포되어 있는 LJ 입자들을 시뮬레이션 하면 상대적으로 dense phase와 dilute phase로 상분리 현상이 일어나게 된다. 상분리 현상의 첫 번째 단계를 핵 생성 (nucleation) 이라고 한다. 본 연구에서는 Brownian Dynamics (BD) Simulation과 Molecular Dynamics (MD) Simulation을 이용하여 상평형 그림을 구하고 초기에 일어나는 LJ 입자들의 nucleation rates를 구하였다.

  • PDF

Application of extraction chromatographic techniques for separation and purification of emerging radiometals 44/47Sc and 64/67Cu

  • Vyas, Chirag K.;Park, Jeong Hoon;Yang, Seung Dae
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.84-95
    • /
    • 2016
  • Considerably increasing interest in using the theranostic isotopes/ isotope pairs of radiometals like $^{44/47}Sc$ and $^{64/67}Cu$ for diagnosis and/or therapeutic applications in the nuclear medicine procedures necessitates its reliable production and supply. Separation and purification of no-carrier-added (NCA) isotopes from macro quantitates of the irradiated target matrix along with other impurities is a cardinal procedure amongst several other steps involved in its production. Multitudinous methods including but not limited to liquid-liquid (solvent) extraction, extraction chromatography (EXC), ion exchange, electrodeposition and sublimation are routinely applied either solitarily or in combination for the separation and purification of radioisotopes depending on their production routes, radioisotope of interest and impurities involved. However, application of EXC though has shown promises towards the numerous separation techniques have not received much attention as far as its application prospects in the field of nuclear medicine are concerned. Advances in the recent past for application of the EXC resins in separation and purification of the several medically important radioisotopes at ultra-high purity have shown promising behavior with respect to their operation simplicity, acidic and radiolytic stability, separation efficiencies and speedy procedures with the enhanced and excellent extraction abilities. In this mini review we will be talking about the recent developments in the application and the use of EXC techniques for the separation and purification of $^{44/47}Sc$ and $^{64/67}Cu$ for medical applications. Furthermore, we will also discuss the scientific and practical aspects of EXC in the view of separation of the NCA trace amount of radionuclides.

Manufacturing and Application of Activated Carbon and Carbon Molecular Sieves in Gas Adsorption and Separation Processes (가스 흡착 및 분리공정용 활성탄소와 탄소분자체의 제조 및 응용)

  • Jeong, Seo Gyeong;Ha, Seongmin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.488-495
    • /
    • 2022
  • Activated carbon (AC) and carbon molecular sieve (CMS) have attracted attention as porous materials for recovery and separation of greenhouse gases. The carbon molecular sieve having uniform pores is used for collecting and separating gases because it may selectively adsorb a specific gas. The size and uniformity of pores determine the performance of the CMS, and chemical vapor deposition (CVD) is widely used to coat the surface with a predetermined thickness in order to control the CMS's micropores. This CVD method can be used to control the size of pores in CMS manufacturing, but it must be optimized because of its various experimental variables. Therefore, in order to produce AC and CMS for gas adsorption and separation, this review focuses on various activation processes and pore control technologies by CVD and surface treatment.

Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation (산소/질소 분리를 위한 다층구조 제올라이트 5A를 함유한 탄소분자체 분리막 제조)

  • Li, Wen;Chuah, Chong Yang;Bae, Tae-Hyun
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.260-268
    • /
    • 2020
  • Mixed-matrix carbon molecular sieve membranes containing conventional and hierarchically structured 5A were synthesized for application in oxygen (O2)/nitrogen (N2) separation. In general, incorporating 5A fillers into porous carbon matrices dramatically increased the permeability of the membrane with a marginal decrease in selectivity, resulting in very attractive O2/N2 separation performances. Hierarchical zeolite 5A, which contains both microporous and mesoporous domains, improved the separation performance further, indicating that the mesopores in the zeolite can serve as an additional path for rapid gas diffusion without sacrificing O2/N2 selectivity substantially. This facile strategy successfully and cost-effectively pushed the performance close to the Robeson upper bound. It produced high performance membranes based on Matrimid® 5218 polyimide and zeolite 5A, which are inexpensive commercial products.

폴리이미드로부터의 탄소분자체막의 제조법과 구조분석

  • 하성룡;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.57-57
    • /
    • 1996
  • 공기로 붜 산소와 질소의 분리, C$_1$-화학공정중의 부산물 가스분리등은 많은 에너지를 필요로 하는 화학공정이다. 이런 에너지 집약적 분리공정에서는 에너지효율을 높이기 위하여 막분리공정의 적용을 고려할 수 있다. 막분리에 적용되는 기체분리막은 분리의 원리에 따라 (a)knudsen flow separation, (b)Molecular sieving separation, (c) Solution-diffusion separation 등으로 나눠진다. 이중 molecular sieving membrane (공경: <7${\AA}$)은 solution-diffusion막보다 높은 투과도와 선택도를 갖기 때문에 최근에 들어 높은 관심을 받고 있다. 그러나 장기성능저하, fouling제거, 제조방법상의 문제점에 대한 해결이 요구되고 있다. 본 연구에서는 폴리이미드를 열분해법을 이용하여 탄화시켜 탄소분자체막을 제조하였고 막제조시에 발생하는 기계적 강도약화를 해결하기 위한 고찰을 행하였다.

  • PDF

Cellular coordination controlling organ separation and surface integrity in plants

  • Lee, Yuree;Kwak, June M.
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.317-318
    • /
    • 2018
  • Plants are unable to relocate themselves to a more favorable location and thus have to deal with developmental programs and environmental cues wherever they happen to be. It is yet largely unknown how plant cells coordinate cellular activities and architectures to accomplish developmental processes and respond to environmental changes. By identifying and establishing a new cellular model system, we have discovered that two neighboring cell types in the abscission zone (AZ) of Arabidopsis flowers coordinate their activities to ensure a precise "cut" through a highly restricted area of plant tissue to bring about organ separation. From this perspective, we further discuss the essence of cellular coordination in AZ, the key molecules controlling the organ separation, and relevant implications.

Nanoporous graphene oxide membrane and its application in molecular sieving

  • Fatemi, S. Mahmood;Arabieh, Masoud;Sepehrian, Hamid
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.