• Title/Summary/Keyword: Molecular Dynamics.

Search Result 1,098, Processing Time 0.034 seconds

Molecular Dynamics Simulation on Hydrogen Adsorption into Catenated Metal Organic Frameworks (분자 동역학을 이용한 상호 관통된 Metal Organic Framework의 수소 흡착에 관한 연구)

  • Lee, Tae-Bum;Kim, Dae-Jin;Jung, Dong-Hyun;Kim, Ja-Heon;Choi, Seung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.9-12
    • /
    • 2006
  • We performed molecular dynamics simulations on the conventional MOF, IRMOF-14 and the catenated MOF with two MOF chains, IRMOF13, to find out rational design and synthetic strategies toward efficient hydrogen storage materials. The molecular dynamics calculations were done using Universal force fields and the analysis of result was performed during the NVE dynamics after preliminary NVT dynamics at 77K. The results showed the density of adsorbed hydrogen molecules was increased in the various pores created by catenation of MOFs while the large amount of volume in conventional MOF was not effectively utilized to store hydrogen. Those calculation results commonly showed the proper control of pore si Be for hydrogen storage into MOF by catenation would be one of the efficient ways to increase hydrogen capacity of MOFs.

  • PDF

Hydrogen Bonds in GlcNAc( β1,3)Gal( β)OMe in DMSO Studied by NMR Spectroscopy and Molecular Dynamics Simulations

  • Shim, Gyu-Chang;Shin, Jae-Min;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.198-202
    • /
    • 2004
  • Hydrogen bond is an important factor in the structures of carbohydrates. Because of great strength, short range, and strong angular dependence, hydrogen bonding is an important factor stabilizing the structure of carbohydrate. In this study, conformational properties and the hydrogen bonds in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO are investigated through NMR spectroscopy and molecular dynamics simulation. Lowest energy structure in the adiabatic energy map was utilized as an initial structure for the molecular dynamics simulations in DMSO. NOEs, temperature coefficients, SIMPLE NMR data, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O7' and HO3' in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO. In aqueous solution, water molecule makes intermolecular hydrogen bonds with the disaccharides and there was no intramolecular hydrogen bonds in water. Since DMSO molecule is too big to be inserted deep into GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe, DMSO can not make strong intermolecular hydrogen bonding with carbohydrate and increases the ability of O7' in GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe to participate in intramolecular hydrogen bonding. Molecular dynamics simulation in conjunction with NMR experiments proves to be efficient way to investigate the intramolecular hydrogen bonding existed in carbohydrate.

Molecular Dynamics and Quantum Chemical Molecular Dynamics Simulations for the Design of MgO Protecting Layer in Plasma Display Panel

  • Kubo, Momoji;Serizawa, Kazumi;Kikuchi, Hiromi;Suzuki, Ai;Koyama, Michihisa;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kajiyama, Hiroshi;Shinoda, Tsutae;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1049-1052
    • /
    • 2008
  • We developed novel molecular dynamics and quantum chemical molecular dynamics simulators for the design of MgO protecting layer in plasma display panel. These simulators were applied to the investigations on the destruction processes of the MgO protecting layer as well as the evaluation of its second electron emission ability. From the simulation results, we successfully proposed new guidelines for MgO protecting layer with high durability and high second electron emission ability.

  • PDF

Molecular Dynamics Simulation of First-Order Phase Transition (일차 상변화 과정의 분자 동력학적 모사)

  • Lee, Jae-Yeon;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.161-166
    • /
    • 2004
  • A study of argon droplet vaporization is conducted using molecular dynamics. Instead of using traditional method such as the Navier-Stokes equation. Molecular dynamics uses Lagrangian frame to describe molecular behavior in a system and uses only momentum and position data of all molecules in the system. So every property is not a hypothetical input but a statistical result calculated from the momentum and position data. This work performed a simulation of the first-order stability for phase transition of a three dementional submicron argon droplet within quiescent environment. Lennard-Jones 12-6 potential function is used as a intermolecular potential function. The molecular configuration is examined while an initially non-sperical droplet is changed into the spherical shape and droplet evaporates or condensates.

  • PDF

Molecular Dynamics Simulation of Droplet Vaporization (분자 동력학을 이용한 액적 기화 시뮬레이션)

  • Nam, Gun-Woo;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.121-126
    • /
    • 2003
  • A study of argon droplet vaporization is conducted using molecular dynamics, instead of using traditional methods such as the Navier-Stokes equation. Molecular dynamics uses Lagrangian frame to describe molecular behavior in a system and uses only momentum and position data of all molecules in the system. So every property is not a hypothetical input but a statistical result calculated from the momentum and position data. This work performed a simulation of the complete vaporization of a three dimensional submicron argon droplet within quiescent environment. Lennard-Jones 12-6 potential function is used as a intermolecular potential function. The molecular configuration is examined while an initially non-spherical droplet is changed into the spherical shape and droplet evaporates. And the droplet radius versus time is calculated with temperature and pressure profile.

  • PDF

Molecular Dynamics Simulations Study on Surface Polishing by Spherical Abrasive (구형 연마재에 의한 표면 연마에 관한 분자동역학 시뮬레이션 연구)

  • Park, Byung-Heung;Kang, Jeong-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.47-51
    • /
    • 2011
  • We investigated the substrate surface polishing by the spherical rigid abrasive under the compression using classical molecular dynamics modeling. We performed three-dimensional molecular dynamic simulations using the Morse potential functions for the various slide-to-roll ratios, from 0 to 1, and then, the compressive forces acting on the spherical rigid abrasive were calculated as functions of the time and the slide-to-roll ratio. The friction coefficients obtained from the classical molecular dynamics simulations were compared to those obtained from the experiments; and found that the molecular dynamic simulation results with the slide-to-roll ratio of 0 value were in good agreement with the experimental results.

A Short Review on the Application of Combining Molecular Docking and Molecular Dynamics Simulations in Field of Drug Discovery

  • Kothandan, Gugan;Ganapathy, Jagadeesan
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.75-78
    • /
    • 2014
  • Computer-aided drug design uses computational chemistry to discover, enhance, or study drugs and related biologically active molecules. It is now proved to be effective in reducing costs and speeding up drug discovery. In this short review, we discussed on the importance of combining molecular docking and molecular dynamics simulation methodologies. We also reviewed the importance of protein flexibility, refinement of docked complexes using molecular dynamics and the use of free energy calculations for the calculation of accurate binding energies has been reviewed.

Molecular Dynamics Simulation Study on the Carbon NanotubeInteracting with a Polymer

  • Saha, Leton C.;Mian, Shabeer A.;Jang, Joon-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.893-896
    • /
    • 2012
  • Using molecular dynamics simulation method, we studied the carbon nanotube (CNT) non-covalently interacting with a polymer. As the polymer coiled around the CNT, the diameter of CNT deformed by more than 40% of its original value within 50 ps. By considering three different polymers, we conclude that the interaction between the CNT and polymer is governed by the number of repeating units in the polymer, not by the molecular weight of polymer.

MOLECULAR UNDERSTANDING OF OSMOSIS USING MOLECULAR DYNAMICS SIMULATION: EFFECTS BY SIZES OF IONS AND NANPORES AND OCCURRENCE OF OSMOSIS (삼투압 현상의 분자적 이해를 위한 분자동역학 시뮬레이션: 이온의 크기와 나노포어의 상관관계 및 삼투 현상 발생에 관한 연구)

  • Cannon, James;Dai, Tang;Kim, Dae-Joong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.581-583
    • /
    • 2010
  • The report summarizes research activities in the Multiscale Energy System Laboratory at Sogang University during September 2009 and February 2010. They are mostly about molecular dynamics simulation of osmotic flows at nanoscale.

  • PDF

Molecular Dynamics Simulation on thermodynamic and Structural Properties of Liquid Hydrocarbons : Normal Alkanes

  • Im, Won-Pil;Won, Young-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.852-856
    • /
    • 1994
  • A series of aliphatic hydrocarbons, methane to hexane in the liquid state, are modeled with the molecular mechanical potential parameters treating all hydrogen degrees of freedom explicitly. Thermodynamic properties (heat capacities and heats of vaporization) are calculated from relatively short (20ps) molecular dynamics trajectories. The liquid state structures are also examined through various radial distribution functions. Molecular dynamics simulations reproduce experimentally measured properties within a few percent errors, thus indicate that the present set of all-hydrogen parameters is suitable for simulating macromolecular systems in bulk.