Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.893

Molecular Dynamics Simulation Study on the Carbon NanotubeInteracting with a Polymer  

Saha, Leton C. (Department of Nanomaterials Engineering, Pusan National University)
Mian, Shabeer A. (Department of Nanomaterials Engineering, Pusan National University)
Jang, Joon-Kyung (Department of Nanomaterials Engineering, Pusan National University)
Publication Information
Abstract
Using molecular dynamics simulation method, we studied the carbon nanotube (CNT) non-covalently interacting with a polymer. As the polymer coiled around the CNT, the diameter of CNT deformed by more than 40% of its original value within 50 ps. By considering three different polymers, we conclude that the interaction between the CNT and polymer is governed by the number of repeating units in the polymer, not by the molecular weight of polymer.
Keywords
Carbon nanotube; Polymer; Molecular dynamics simulation; Deformation; Binding energy;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kong, H.; Luo, P.; Gao, C.; Yan, D. Polymer 2005, 46, 2472.   DOI
2 Zhang, C.; Maric, M. Polymers 2011, 3, 1398.   DOI
3 Smith, W.; Yong, C. W.; Rodger, P. M. Mol. Simul. 2002, 28, 385.   DOI
4 Wong, M.; Paramsothy, M.; Xu, X. J.; Ren, Y.; Li, S.; Liao, K. Polymer 2003, 44, 7757.   DOI   ScienceOn
5 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, U.K 1987.
6 Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897.   DOI
7 Yu, M.-F.; Kowalewski, T.; Ruoff, R. S. Phys. Rev. Lett. 2000, 85, 1456.   DOI
8 Minary-Jolandan, M.; Yu, M.-F. J. Appl. Phys. 2008, 103, 073516.   DOI
9 Wei, C. Nano Lett. 2006, 6, 1627.   DOI
10 Yang, M.; Koutsos, V.; Zaiser, M. J. Phys. Chem. B 2005, 109, 10009.   DOI
11 McCarthy, B.; Coleman, J. N.; Czerw, R.; Dalton, A. B.; Panhuis, M.; Maiti, A.; Drury, A.; Bernier, P.; Nagy, J. B.; Lahr, B.; Byrne, H. J.; Carroll, D. L.; Blau, W. J. J. Phys. Chem. B 2002, 106, 2210.   DOI
12 Liao, K.; Li, S. Appl. Phys. Lett. 2001, 79, 4225.
13 Jiang, L. Y.; Huang, Y.; Jiang, H.; Ravichandran, G.; Gao, H.; Hwang, K. C.; Liu, B. J. Mech. Phys. Solids 2006, 54, 2436.   DOI
14 Didenko, V. V.; Moore, V. C.; Baskin, D. S.; Smalley, R. E. Nano Lett. 2005, 5, 1563.   DOI
15 Numata, M.; Asai, M.; Kaneko, K.; Bae, A.-H.; Hasegawa, T.; Sakurai, K.; Shinkai, S. J. Am. Chem. Soc. 2005, 127, 5875.   DOI
16 Li, Q.; Zaiser, M.; Koutsos, V. Phys. Status Solidi A 2004, 201, R89.   DOI
17 Gou, J.; Minaie, B.; Wang, B.; Liang, Z. Y.; Zhang, C. Comput. Mater. Sci. 2004, 31, 225.   DOI
18 Liu, W.; Yang, L. C.; Zhu, Y. T.; Wang, M. J. Phys. Chem. C 2008, 112, 1803.   DOI
19 Naito, M.; Nobusawa, K.; Onouchi, H.; Nakamura, M.; Yasui, K.; Ikeda, A.; Fujiki, M. J. Am. Chem. Soc. 2008, 130, 16697.   DOI
20 Hertal, T.; Walkup, R. E.; Avouris, P. Phys. Rev. B 1998, 58, 13870.   DOI
21 Bower, C.; Rosen, R.; Jin, L.; Han, J.; Zhou, O. Appl. Phys. Lett. 1999, 74, 3317.   DOI
22 Zhao, W.; Liu, Y. T.; Feng, Q. P.; Xie, X. M.; Wang, X. H.; Ye, X. Y. Journal of Applied Polymer Science 2008, 109, 3525.   DOI
23 Baskaran, D.; Mays, J. W.; Bratcher, M. S. Chem. Mater. 2005, 17, 3389.   DOI
24 Teh, S. L.; Linton, D.; Sumpter, B.; Dadmun, M. Macromolecules 2011, 44, 7737.   DOI
25 Iijima, S. Nature 1991, 354, 56.   DOI
26 O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett. 2001, 342, 265.   DOI
27 Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Nat. Nanotechnol. 2007, 2, 640.   DOI
28 Dieckmann, G. R.; Dalton, A. B.; Johnson, P. A.; Razal, J.; Chen, J.; Giordano, G. M.; Munoz, E.; Musselman, I. H.; Baughman, R. H.; Draper, R. K. J. Am. Chem. Soc. 2003, 125, 1770.   DOI   ScienceOn
29 Tallury, S. S.; Pasquinelli, M. A. J. Phys. Chem. B 2010, 114, 9349.   DOI
30 Liu, W.; Yang, C. L.; Zhu, Y. T.; Wang, M. S. J. Phys. Chem. C 2008, 112, 1803.   DOI
31 Xie, Y.; Soh, A. K. Mater. Lett. 2005, 59, 971.