• Title/Summary/Keyword: Molecular Breeding

Search Result 786, Processing Time 0.027 seconds

Genetic diversity and population structure of rice accessions from South Asia using SSR markers

  • Cui, Hao;Moe, Kyaw Thu;Chung, Jong-Wook;Cho, Young-Il;Lee, Gi-An;Park, Yong-Jin
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.11-22
    • /
    • 2010
  • The population structure of a domesticated species is influenced by the natural history of the populations of its pre-domesticated ancestors, as well as by the breeding system and complexity of breeding practices implemented by humans. In the genetic and population structure analysis of 122 South Asia collections using 29 simple sequence repeat (SSR) markers, 362 alleles were detected, with an average of 12.5 per locus. The average expected heterozygosity and polymorphism information content (PIC) for each SSR locus were 0.74 and 0.72,respectively. The model-based structure analysis revealed the presence of three clusters with the 91.8% (shared > 75%) membership, with 8.2% showing admixture. The genetic distances of Clusters 1-3 were 0.55, 0.56, and 0.68, respectively. Polymorphic information content followed the same trend (Cluster 3 had the highest value and Cluster 1 had smallest value), with genetic distances for each cluster of 0.52, 0.52, and 0.65, respectively. This result could be used for supporting rice breeding programs in South Asia countries.

Soybean Improvement for Drought, Salt and Flooding Tolerance

  • Pathan, Safiullah;Nguyen, Henry T.;Sharp, Robert E.;Shannon, J. Grover
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.329-338
    • /
    • 2010
  • Drought, salinity and flooding are three important abiotic factors limiting soybean production worldwide. Irrigation, soil reclamation, and drainage systems are not generally available or economically feasible for soybean production. Therefore, productive soybean varieties with tolerance are a cost effective means for reducing yield losses due to these factors. Genetic variability for higher tolerance to drought, salt and flooding is important. However, only a small portion of nearly 200,000 world soybean accessions have been screened to find genotypes with tolerance for use in breeding programs. Evaluation for tolerance to drought, salinity and flooding is difficult due to lack of faster, cost effective, repeatable screening methods. Soybean strains with higher tolerance to the above stresses have been identified. Crosses with lines with drought, salt and flooding tolerance through conventional breeding has made a significant contribution to improving tolerance to abiotic stress in soybean. Molecular markers associated with tolerance to drought, salt and flooding will allow faster, reliable screening for these traits. Germplasm resources, genome sequence information and various genomic tools are available for soybean. Integration of genomic tools coupled with well-designed breeding strategies and effective uses of these resources will help to develop soybean varieties with higher tolerance to drought, salt and flooding.

Mapping of Quantitative Trait Loci for Yield and Grade Related Traits in Peanut (Arachis hypogaea L.) Using High-Resolution SNP Markers

  • Liang, Yuya;Baring, Michael R.;Septiningsih, Endang M.
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.454-462
    • /
    • 2018
  • Yield and grade are the key factors that affect production value of peanut. The objective of this study was to identify QTLs for pod yield, hundred-seed weight, and total sound mature kernel (TSMK). A total of 90 recombinant inbred lines, derived from Tamrun OL07 and a breeding line Tx964117, were used as a mapping population and planted in Brownfield and Stephenville, Texas. A genetic map was developed using 1,211 SNP markers based on double digest restriction-site associated DNA sequencing (ddRAD-seq). A total of 10 QTLs were identified above the permutation threshold, three for yield, three for hundred-seed weight and four for TSMK, with LOD score values of 3.7 - 6.9 and phenotypic variance explained of 12.2% - 35.9%. Among those, there were several QTLs that were detected in more than one field experiment. The commonly detected QTLs in this study may be used as potential targets for future breeding program to incorporate yield and grade related traits through molecular breeding.

Construction of an Analysis System Using Digital Breeding Technology for the Selection of Capsicum annuum

  • Donghyun Jeon;Sehyun Choi;Yuna Kang;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.233-233
    • /
    • 2022
  • As the world's population grows and food needs diversify, the demand for horticultural crops for beneficial traits is increasing. In order to meet this demand, it is necessary to develop suitable cultivars and breeding methods accordingly. Breeding methods have changed over time. With the recent development of sequencing technology, the concept of genomic selection (GS) has emerged as large-scale genome information can be used. GS shows good predictive ability even for quantitative traits by using various markers, breaking away from the limitations of Marker Assisted Selection (MAS). Moreover, GS using machine learning (ML) and deep learning (DL) has been studied recently. In this study, we aim to build a system that selects phenotype-related markers using the genomic information of the pepper population and trains a genomic selection model to select individuals from the validation population. We plan to establish an optimal genome wide association analysis model by comparing and analyzing five models. Validation of molecular markers by applying linkage markers discovered through genome wide association analysis to breeding populations. Finally, we plan to establish an optimal genome selection model by comparing and analyzing 12 genome selection models. Then We will use the genome selection model of the learning group in the breeding group to verify the prediction accuracy and discover a prediction model.

  • PDF

Alteration of Genetic Make-up in Karnal Bunt Pathogen (Tilletia indica) of Wheat in Presence of Host Determinants

  • Gupta, Atul K.;Seneviratne, J.M.;Bala, Ritu;Jaiswal, J.P.;Kumar, Anil
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Alteration of genetic make-up of the isolates and mono-sporidial strains of Tilletia indica causing Karnal bunt (KB) disease in wheat was analyzed using DNA markers and SDS-PAGE. The generation of new variation with different growth characteristics is not a generalized feature and is not only dependant on the original genetic make up of the base isolate/monosporidial strains but also on interaction with host. Host determinant(s) plays a significant role in the generation of variability and the effect is much pronounced in monosporidial strains with narrow genetic base as compared to broad genetic base. The most plausible explanation of genetic variation in presence of host determinant(s) are the recombination of genetic material from two different mycelial/sporidia through sexual mating as well as through parasexual means. The morphological and development dependent variability further suggests that the variation in T. indica strains predominantly derived through the genetic rearrangements.

Comparison of Agrobacterium-mediated of Five Alfalfa (Medicago sativa L.) Cultivars Using the GUS Reporter Gene

  • Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Cha, Joon-Yung;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.187-192
    • /
    • 2014
  • Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world. It has been demanded to establish the efficient transformation system in commercial varieties of alfalfa for forage molecular breeding and production of varieties possessing new characteristics. To approach this, genetic transformation techniques have been developed and modified. This work was performed to establish conditions for effective transformation of commercial alfalfa cultivars, Xinjiang Daye, ABT405, Vernal, Wintergreen and Alfagraze. GUS gene was used as a transgene and cotyledon and hypocotyl as a source of explants. Transformation efficiencies differed from 0 to 7.9% among alfalfa cultivars. Highest transformation efficiencies were observed in the cultivar Xinjiang Daye. The integration and expression of the transgenes in the transformed alfalfa plants was confirmed by polymerase chain reaction (PCR) and histochemical GUS assay. These data demonstrate highly efficient Agrobacterium transformation of diverse alfalfa cultivars Xinjiang Daye, which enables routine production of transgenic alfalfa plants.

Characterization and RT-PCR Detection of dsRNA Mycoviruses from the Oyster Mushroom, Pleurotus ostreatus

  • Seo, Jang-Kyun;Lim, Won-Seok;Jeong, Ji-Hye;Yoo, Young-Bok;Yie, Se-Won;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.200-205
    • /
    • 2004
  • The partial nucleotide sequences of the genomic dsRNA mycovirus infecting Pleurotus ostreatus isolates ASI2223 and Suhan were determined and compared with those of mycoviruses belonging to partitiviruses and totiviruses. Partial nucleotide sequences of the purified dsRNA from ASI2223 and Suhan showed RNA-dependent RNA polymerase sequences that are closely related to those of partitiviruses, including Fusarium poae virus 1, Fusarium solani virus, Rhizoctoniasolani virus, Discula destructiva virus 2, and Oyster mushroom isometric virus 2. Specific primers were designed for RT-PCR detection of dsRNA viruses from the P. ostreatus isolate ASI2223 and Suhan. Two virus specific primer sets were found to specifically detect each virus among six sets of designed oligonucleotide primers. Collectively, these results suggest that dsRNA mycoviruses from P. ostreatus isolates ASI2223 and Suhan belong to the family Partitiviridae, although, they are not the same virus species. Our results also suggest that these virus-specific primer sets can be employed for the specific detection of each viral sequence in infected tissues.