• Title/Summary/Keyword: Molecular Beam Epitaxy

Search Result 352, Processing Time 0.021 seconds

Growth Interruption Effects of GaAs/AlGaAs Quantum Wells Grown by Molecular Beam Epitaxy (분자선에피택시에 의해 성장한 GaAs/AlGaAs 양자우물의 성장 멈춤 효과)

  • Kim, Min-Su;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.365-370
    • /
    • 2010
  • The growth interruption effects on growth mode of the GaAs and AlGaAs epitaxial layers grown on GaAs substrate by molecular beam epitaxy were investigated. Growth process of the epitaxial layers as a function of the growth interruption time was observed by reflection high energy electron diffraction (RHEED). The growth interruption time was 0, 15, 30, 60 s. The GaAs/$Al_{0.3}Ga_{0.7}As$ multi quantum wells (MQWs) with different growth interruption time were grown and its properties were investigated. RHEED intensity oscillation and optical property of the MQWs were dependent on the growth interruption time. When the growth interruption time was 30 s, interface between the well and barrier layers became sharper.

Blue Luminescent Center in Undoped ZnO Thin Films Grown by Plasma-assisted Molecular Beam Epitaxy (플라즈마 보조 분자선 적층 성장법으로 성장한 ZnO 박막의 청색 발광 중심)

  • Kim, Jong-Bin;No, Young-Soo;Byun, Dong-Jin;Park, Dong-Hee;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.281-287
    • /
    • 2009
  • ZnO thin film was grown on a sapphire single crystal substrate by plasma assisted molecular beam epitaxy. In addition to near band edge (NBE) emissions, both blue and green luminescences are also observed together. The PL intensity of the blue luminescence (BL) range from 2.7 to 2.9 eV increased as the amount of activated oxygen increased, but green luminescence (GL) was weakly observed at about 2.4 eV without much change in intensity. This result is quite unlike previous studies in which BL and GL were regarded as the transition between shallow donor levels such as oxygen vacancy and interstitial zinc. Based on the transition level and formation energy of the ZnO intrinsic defects predicted through the first principle calculation, which employs density functional approximation (DFA) revised by local density approximation (LDA) and the LDA+U approach, the green and blue luminescence are nearly coincident with the transition from the conduction band to zinc vacancies of $V^{2-}_{Zn}$ and $V^-_{Zn}$, respectively.

Effect of First-Stage Growth Manipulation and Polarity of SiC Substrates on AlN Epilayers Grown Using Plasma-Assisted Molecular Beam Epitaxy

  • Le, Duy Duc;Kim, Dong Yeob;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.266-270
    • /
    • 2014
  • Aluminum nitride(AlN) films were grown on the C-face and on the Si-face of (0001) silicon carbide(SiC) substrates using plasma-assisted molecular-beam epitaxy(PA-MBE). This study was focused on first-stage growth manipulation prior to the start of AlN growth. Al pre-exposure, N-plasma pre-exposure, and simultaneous exposure(Al and N-plasma) procedures were used in the investigation. In addition, substrate polarity and, first-stage growth manipulation strongly affected the growth and properties of the AlN films. Al pre-exposure on the C-face and on the Si-face of SiC substrates prior to initiation of the AlN growth resulted in the formation of hexagonal hillocks on the surface. However, crack formation was observed on the C-face of SiC substrates without Al pre-exposure. X-ray rocking-curve measurements revealed that the AlN epilayers grown on the Si-face of the SiC showed relatively lower tilt and twist mosaic than did the epilayers grown on the C-face of the SiC. The results from the investigations reported in this paper indicate that the growth conditions on the Si-face of the SiC without Al pre-exposure was highly preferred to obtain the overall high-quality AlN epilayers formed using PA-MBE.

Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties (Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.542-546
    • /
    • 2019
  • We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : $n^+-i(QD)-n^+$ QDIP with undoped quantum dot(QD) active region and $n^+-n^-(QD)-n^+$ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the $n^+-n^-(QD)-n^+$ structure, Si dopant is directly doped in InAs QD at $2{\times}10^{17}/cm^3$. Undoped and doped QDIPs show a photoresponse peak at about $8.3{\mu}m$, ranging from $6{\sim}10{\mu}m$ at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.

Growth and characterization of MgZnO grown on R-plane sapphire substrate by plasma-assisted molecular beam epitaxy

  • Han, Seok-Kyu;Kim, Jung-Hyun;Hong, Soon-Ku;Lee, Jae-Wook;Lee, Jeong-Yong;Kim, Ho-Jong;Song, Jung-Hoon;Yao, Takafumi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.114-114
    • /
    • 2009
  • ZnO has received considerable attention due to its potential applicability to optoelectronic devices such as ultraviolet-light emitting diodes (UVLEDs) and laser diodes (LDs). As well known, however, polar ZnO with the growth direction along the c-axis has spontaneous and piezoelectric polarizations that will result in decreased quantum efficiency. Recently, nonpolar ZnO has been studied to avoid such a polarization effect. In order to realize applications of nonpoar ZnO-based films to LEDs, growth of high quality alloys for quantum well structures is one of the important tasks that should be solved. $Mg_xZn_{1-x}O$ and $Cd_xZn_{1-x}O$ is ones of most promising alloys for this application because the alloys of ZnO with MgO and CdO provide a wide range of band-gap engineering spanning from 2.4 to 7.8 eV. In this study, we investigated on $Mg_xZn_{1-x}O$ films grown with various Mg/Zn flux ratios The films were grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). we investigated on $Mg_xZn_{1-x}O$ films grown with various Mg/Zn flux ratios. The films were grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). With the relatively low Mg/Zn flux ratios, a typical striated anisotropic surface morphology which was generally observed from the nonpolar (11-20) ZnO film on r-plane sapphire substrates. By increasing the Mg/Zn flux ratio, however, additional islands were appeared on the surface and finally the surface morphology was entirely changed, which was generally observed for the (0001) polar ZnO films by losing the striated morphology. Investigations by X-ray $\Theta-2{\Theta}$ diffraction revealed that (0002) and (10-11) ZnO planes are appeared in $Mg_xZn_{1-x}O$ films by increasing the Mg/Zn flux ratio. Further detailed investigation by transmission electron microscopy (TEM) and photoluminescence (PL) will be discussed.

  • PDF

Growth of La0.35Pr0.35Ca0.3MnO3/LaAlO3 Thin Film using Laser Molecular-Beam Epitaxy and its Magnetic Properties (Laser Molecular-Beam Epitaxy를 이용한 La0.35Pr0.35Ca0.3MnO3/LaAlO3 초격자 박막의 합성과 그 자기적 특성의 연구)

  • Seung, S.K.;Song, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.93-98
    • /
    • 2011
  • We successfully grew $La_{0.35}Pr_{0.35}Ca_{0.3}MnO_3$(LPCMO)/$LaAlO_3$(LAO) thin film using Laser Molecular-Beam Epitaxy and studied post-growth annealing effects ($750^{\circ}C$, 5 h) on its crystal structural and magnetic properties. Whereas the single-layered LPCMO and LPCMO/STO superlattice thin films show rough surface before and after the post-growth annealing, LPCMO/LAO superlattice shows a relatively very flat surface even after the post-growth annealing. The enhancement of ferromagnetism of LPCMO/LAO superlattice after the post-growth annealing was remarkable compared to the single-layered LPCMO thin film. The coercive and saturation magnetic field of the single-layed LPCMO thin film were decreased after the post-annealing. However, for LPCMO/LAO superlattice, a same coercive and increased saturation magnetic field were exhibited after post-growth annealing. We suggest that these peculiar observations are originate from the super-structure of LPCMO and LAO.

Influence of MBE Growth Temperature on the Sulfur Compositional Variation Of ZnSSe Epitaxial Layers on GaAs Substrates

  • Kim, Dong-Lyeul;Bae, In-Ho;Son, Jeong-Sik;Kim, In-Su;Lee, Jae-Young m;Akira Yoshida
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.18-22
    • /
    • 2000
  • In this work, we reported the sulfur compositional variation of ZnS$\_$x/Se$\_$1-x/ epitaxial layers with growth temperature and BEP ration of ZnX/Se/)P$\_$ZnS//P$\_$Se/) grown on GaAs substrates by molecular beam epitaxy. The sulfur composition of ZnSSe epitaxial layers was varied sensitively on the growth temperature and show different linear relationship with growth temperature and BEP ration of ZnS/Se(P$\_$ZnS//P$\_$Se/), which revealed -0.107 %$\^{C}$ at (P$\_$ZnS//P$\_$Se/)=0.30 and -0.052 %$\^{C}$ at (P$\_$ZnS//P$\_$Se/)=0.158 rspectively. A reference data for the accurate control of the sulfur composition and the growth of high quality ZnSSe/GaAs epitaxial layers was provided.

  • PDF

Effects of Substrate Cleaning on the Properties of GaAs Epilayers Grown on Si(100) Substrate by Molecular Beam Epitaxy (분자선에피택시에 의해 Si (100) 기판 위에 성장한 GaAs 에피층의 특성에 대한 기판 세척효과)

  • Cho, Min-Young;Kim, Min-Su;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.371-376
    • /
    • 2010
  • The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy (MBE) using the two-step method. The Si(100) substrates were cleaned with three different surface cleaning methods of vacuum heating, As-beam exposure, and Ga-beam deposition at the substrate temperature of $800^{\circ}C$ in the MBE growth chamber. Growth temperature and thickness of the GaAs epitaxial layer were $800^{\circ}C$ and $1{\mu}m$, respectively. The surface structure and properties were investigated by reflection high-energy electron diffraction (RHEED), AFM (Atomic force microscope), DXRD (Double crystal x-ray diffraction), PL (Photoluminescence), and PR (Photoreflectance). From RHEED, the surface structure of GaAs epitaxial layer grown on Si(100) substrate with Ga-beam deposition is ($2{\times}4$). The GaAs epitaxial layer grown on Si(100) substrate with Ga-beam deposition has a high quality.

Growth of Epitaxial AlN Thin Films on Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법을 이용한 사파이어 기판 위 질화알루미늄 박막의 에피탁시 성장)

  • Lee, Hyo-Sung;Han, Seok-Kyu;Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Hong, Soon-Ku;Jeong, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.634-638
    • /
    • 2011
  • We report growth of epitaxial AlN thin films on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. To achieve two-dimensional growth the substrates were nitrided by nitrogen plasma prior to the AlN growth, which resulted in the formation of a two-dimensional single crystalline AlN layer. The formation of the two-dimensional AlN layer by the nitridation process was confirmed by the observation of streaky reflection high energy electron diffraction (RHEED) patterns. The growth of AlN thin films was performed on the nitrided AlN layer by changing the Al beam flux with the fixed nitrogen flux at 860$^{\circ}C$. The growth mode of AlN films was also affected by the beam flux. By increasing the Al beam flux, two-dimensional growth of AlN films was favored, and a very flat surface with a root mean square roughness of 0.196 nm (for the 2 ${\mu}m$ ${\times}$ 2 ${\mu}m$ area) was obtained. Interestingly, additional diffraction lines were observed for the two-dimensionally grown AlN films, which were probably caused by the Al adlayer, which was similar to a report of Ga adlayer in the two-dimensional growth of GaN. Al droplets were observed in the sample grown with a higher Al beam flux after cooling to room temperature, which resulted from the excessive Al flux.

TEM Study on the Growth Characteristics of Self-Assembled InAs/GaAs Quantum Dots

  • Kim, Hyung-Seok;Suh, Ju-Hyung;Park, Chan-Gyung;Lee, Sang-Jun;Noh, Sam-Gyu;Song, Jin-Dong;Park, Yong-Ju;Lee, Jung-Il
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.35-40
    • /
    • 2006
  • Self-assembled InAs/GaAs quantum dots (QDs) were grown by the atomic layer epitaxy (ALE) and molecular beam epitaxy (MBE) techniques, The structure and the thermal stability of QDs have been studied by high resolution electron microscopy with in-situ heating experiment capability, The ALE and MBE QDs were found to form a hemispherical structure with side facets in the early stage of growth, Upon capping by GaAs layer, however, the apex of QDs changed to a flat one. The ALE QDs have larger size and more regular shape than those of MBE QDs. The QDs collapse due to elevated temperature was observed directly in atomic scale, In situ heating experiment within TEM revealed that the uncapped QDs remained stable up to $580^{\circ}C$, However, at temperature above $600^{\circ}C$, the QDs collapsed due to the diffusion and evaporation of In and As from the QDs, The density of the QDs decreased abruptly by this collapse and most of them disappeared at above $600^{\circ}C$.