• Title/Summary/Keyword: Molding System

Search Result 675, Processing Time 0.031 seconds

Optimization of Injection Molding to Minimize Sink Marks for Cylindrical Geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.111-115
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program $Moldflow^{TM}$ and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

Design of Gate Locations, Molding Conditions, and Part Structure to Reduce the Warpage of Short-Fiber Reinforced Injection Molded Part (단섬유 보강 사출성형품의 휨 감소를 위한 게이트 위치, 성형 조건 및 제품 구조 설계)

  • Choi, D.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.443-448
    • /
    • 2008
  • Fiber reinforced injection molded parts are widely used in recent years because of their improved properties of materials such as specific stiffness, specific strength, and specific toughness. The demand for products with high precision is increasing and it is important to minimize the warpage of the products. The warpage of short-fiber reinforced product is caused by anisotropy induced by fiber orientation as well as the residual stresses induced during the molding process. In order to reduce the warpage of the part, it is important to achieve successful mold design, processing control, and part design. In the present study, the design of gating system, molding condition, and part structure were carried out and verified with numerical analysis using a commercial CAE code Moldflow. The numbers and locations of gates were iteratively determined, and the molding conditions which can decrease the warpage of the part were investigated. Finally, slight structural modification of the part was conducted to reduce the locally concentrated warpage.

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

Case Study of Practical Tool Training for Optimal Runner System (최적 유동시스템을 위한 실무금형교육 사례 연구)

  • Shin, Ju-Kyung
    • Journal of Practical Engineering Education
    • /
    • v.9 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • In injection molding process, the runner system of the mold is a flow path for filling the cavity of the molded part during the advance of the screw by the force of the hydraulic cylinder, which involves the filling and packing process of the molten resin. Thus, the sprue, runner and gate greatly affect the appearance of the molded part, the physical properties of the resin, the dimensional accuracy and the molding cycle etc. Feed systems with incorrect runner and gate designs cause various molding defects, So it is important to maintain the optimum runner balance to prevent these defects. In order to improve the knowledge of practical mold technology, which is applied to the manufacturers of injection molds, a training model of the mold technology process is presented based on the technical guidance on the technical difficulties.

A Study on Key Parameters and Characteristics in the Manufacturing Process of the Dual Pickup Objective Lens (Dual Pickup 대물렌즈의 생산을 위한 주요 Parameter 및 특성에 관한 연구)

  • Woo, Sun-Hee;Lee, Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.117-124
    • /
    • 2007
  • In order to operate CD and DVD compatibly in a pickup system, the objective lens comprise diffractive optical element(DOE) zone and aspheric curvature on its lens surface. The DOE objective lens is effective to simplify this dual-purpose pickup system of the 655nm and 785nm wavelength by using only one lens, but requires more precision manufacturing process and system due to the complicated shape. This paper presents the overall manufacturing process of this objective lens and describes main parameters in each process, for the correction of the aspheric surface in its core, the shrinkage compensation after injection molding, and the uniformity compensation by adjusting molding conditions.

A Study of Evaluation Technology for Heating Channel Layout in SMC Molds (SMC 금형의 가열채널레이아웃 평가기술에 관한 연구)

  • 이성희;고영배;이종훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.580-584
    • /
    • 2004
  • In the present study, an evaluation technology for heating channel layout was investigated in SMC molding system design. Conventional design rules of cooling channel in injection molding process were applied to the present work. Finite element thermal analysis with ANSYSTM was performed to evaluate the temperature distribution of mold surface. SMC mold was manufactured to test the effect of a proposed heating channel layout system on the temperature distribution of mold surface and infrared camera was applied to a measurement of temperature. It was shown that infrared camera application was possible in a measurement of temperature distribution on mold surface.

  • PDF

Minimization of Weld Lines in Two Shot Molded Parts with Microlenses (미소 렌즈가 내재화된 이중사출 성형제품의 웰드라인 최소화)

  • 신주경;민병권;김영주;강신일
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • A new design based on the appropriate geometry of molded part and type of runner system under the optimal processing conditions was proposed to minimize the micro weld lines on the sub deco surface molded by two shot molding. Theoretical and experimental studies were conducted to examine the cause of the weld lines during the overmolding process in two shot molding. Various dimensions and geometries of substrate$(1^{st}shot)$ and the wall thickness of overmold$(2^{nd}shot)$ have been proposed to avoid the weld lines which are the most inevitable appearance defects occurred on the sub deco. The each design proposal was analyzed by mold flow analysis after part modeling. The analysis results were compared with molded part from mass production tool. It could be seen that from the analysis that the proper geometry of plastic part and type of runner system considering pressure drop under the optimal processing conditions were the most influential factors to avoid weld lines occured on the sub deco.

CAE Analysis and Optimization of Injection Molding for a Mobile Phone Cover (휴대폰 커버 사출성형의 CAE 해석 및 최적화)

  • Park, Ki-Yoon;Kim, Hyeon-Seong;Kang, Jin-Hyun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.60-65
    • /
    • 2012
  • This paper deals with an CAE analysis and optimization of injection molding for a mobile phone cover. Two design goals are established in the optimization; one is to switch over the feed system from cold runner to hot runner for the purpose of reducing material costs, and the other is to minimize the warpage in order to improve product quality. By the full-factorial experiments for design parameters, we showed that the cold runner design could be changed to the hot runner design by replacing the current resin with a new resin of higher fluidity. In addition, we could significantly reduce the warpage of the cover product under the hot runner system by optimizing packing pressure and packing time.

Filling Imbalance of Elastomer TPVs in Injection Mold with Unary Branch Type Runner System (편측 분기형 러너시스템을 가진 사출금형에서 엘라스토머 TPV의 충전 불균형)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Recently, the study for filling imbalance in thermoplastic polymer has gradually been increased. However, it is hard to find the researches for filling imbalance of thermoplastic elastomer(TPE). The experiment of filling imbalance was conducted for the three kinds of thermoplastic vulcanizes(TPVs) and PP polymer in the mold with geometrically balanced runner system(Unary Branch Type Runner System). In this experiment, the effects of the melt temperature, injection pressure and injection speed on the filling imbalance were investigated. There was also the imbalance in TPV injection molding process as well as in conventional injection molding with plastics. The tendency of filling imbalance in TPV injection molding specially decreased by taking place the hesitation of TPV melt.

A binder system for low carbon residue and debinding behaviors in injection molding of NdFeB powder (NbFeB 분말사출성형에소 저잔류탄소를 위한 결합제 및 탈지거동)

  • 최준환
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.132-138
    • /
    • 1999
  • A new binder system and debinding process for low carbon residue in the injection molding of Nd(Fe, Co)B powder are investigated. In the injection molding of magnetic materials, it is demanded to reduce carbon residue which deteriorates their magnetic properties. The binder system developed is composed of polyethylene glycols (PEGs) and polypropylene (PP). PEG was selected as a major binder is component to be extracted in a molecular state by solvent extraction in ethanol, which step would leave no residue. PP was selected as a minor binder component to be subsequently removed by thermolysis which step would leave carbon residue. The behaviors of solvent extraction with the variations of PEG molecular weight, temperature, and time were examined. The dependency of residual carbon content on thermolysis atmosphere was also studied. Opened pore channels introduced in a green body by the solvent extraction and microstructures of the sintered magnets were observed using SEM.

  • PDF