• Title/Summary/Keyword: Molded Case Circuit Breakers

Search Result 26, Processing Time 0.028 seconds

A Study on the Physical Characteristics of the Low-voltage Circuit Breaker Based on the Accelerated Degradation Test (가속 열화 시험에 따른 저압용 차단기의 물리적 특성에 관한 연구)

  • Sin dong, Kang;Jae-Ho, Kim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.1-8
    • /
    • 2022
  • This study analyzed the characteristics of insulation resistance and operating time based on an accelerated degradation test of a low-voltage circuit breaker. The experimental sample used a molded case circuit breaker (MCCB) and an earth leakage circuit breaker (ELCB). After measuring the insulation resistance of the circuit breakers, the leakage current was affected by an external rather than an internal structure. Furthermore, the insulation resistance of the circuit breakers with accelerated degradation was measured using a Megger insulation tester. In the accelerated degradation test, aging times of five, ten, 15, and 20 years were applied according to a temperature derived using the Arrhenius equation. Circuit breakers with an equivalent life of ten, 15, and 20 years had increased insulation resistance compared to those with less degradation time. In particular, the circuit breaker with an equivalent life of ten years had the highest insulation resistance. Component analysis of the circuit breaker manufactured through an accelerated degradation test confirmed that the timing of the increase in insulation resistance and the time of additive loss were the same. Finally, after analyzing the operating time of the circuit breakers with degradation, it was confirmed that the MCCB did not change, but the ELCB breaker failed.

Improvement of Short Circuit Performance in 460[V]/400[A]/85[kA] Molded Case Circuit Breakers (460[V]/400[A]/85[kA] 배선용 차단기의 그리드 및 아크런너 변형을 통한 차단성능 향상)

  • Lee, Seung-Su;Jung, Eui-Hwan;Yoon, Jae-Hun;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1451_1452
    • /
    • 2009
  • Owing to the increasing number of intelligent homes(or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker depends on the shape, arrangement, and kinds of material of grids. This paper is focused on understanding the interrupting capability, more specifically of the grid and the arc runner, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF

Methods for Increasing the Interrupting Performance of Are Chamber in 460V / 50KA / 100AF Molded Case Circuit Breaker (460V / 50KA / 100AF 급 배선용 차단기의 소호부 차단 성능 향상 방법)

  • Cho, Sung-Hoon;Jung, Eui-Hwan;Lee, Han-Ju;Lim, Kee-Joe;Kim, Kil-Sou
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.105-105
    • /
    • 2010
  • Voltage circuit breakers are widely used in power distribution systems to interrupt fault current rapidly and to assure the reliability of the power supply. Power distribution system requires the transformer with higher capacity than ever, but this ever, but this may be the cause. of the increasing of short circuit current in contrast to conventional one when short-circuit accident is occurred. Therefore molded case circuit breaker improved in aspects of interrupting capacity of short circuit current in this system is needed. By using the proposed methods in this paper, such as new arc quenching structure of grid would contribute to minimizing the MCCB, realization of high interrupting performance and reducing the design time and development cost.

  • PDF

Calculation of Electrodynamic Repulsion Force in Molded Case Circuit Breakers Using the 3-D Finite Element Analysis (3차원 유한요소 해석을 이용한 배선용 차단기의 전자반발력 계산)

  • Kim, Yong-Gi;Park, Hong-Tae;Song, Jung-Chun;Seo, Jung-Min;Degui, Chen
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.137-140
    • /
    • 2003
  • To the optimization design of molded case circuit breakers(MCCBs), it is necessary and important to calculate the electro-dynamic repulsion force acting on the movable conductor. With 3-D finite element nonlinear analysis, according to the equations among current-magnetic field-repulsion force and taking into account the ferromagnet, contact bridge model is introduced to simulate the current constriction between contacts, so Lorentz and Holm force acting on the movable conductor and contact, respectively, can be integrated to calculate. Coupled with circuit equations, the opening time of movable contact also can be obtained using iteration with the restriction of contact force. Simulation and experiment for repulsion forte and opening time of five different configuration models have been investigated. The results indicate that the proposed method is effective and capable of evaluating new design of contact systems in MCCBs.

  • PDF

Implementing a Dielectric Recovery Strength Measuring System for Molded Case Circuit Breakers

  • Cho, Young-Maan;Rhee, Jae-ho;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1752-1758
    • /
    • 2018
  • In a low-voltage distribution system, the molded case circuit breaker (MCCB) is a widely used device to protect loads by interrupting over-current; however the hot gas generated from the arc discharge in the interrupting process depletes the dielectric recovery strength between electrodes and leads to re-ignition after current-zero. Even though the circuit breaker is ordinarily tripped and successfully interrupts the over-current, the re-ignition causes the over-current to flow to the load again, which carries over the failure interruption. Therefore, it is necessary to understand the dielectric recovery process and the dielectric recovery voltage of the MCCB. To determine these characteristics, a measuring system comprised of the experimental circuit and source is implemented to apply controllable recovery voltage and over-current. By changing the controllable recovery voltage, in this work, re-ignition is driven repeatedly to obtain the dielectric recovery voltage V-t curve, which is used to analyze the dielectric recovery strength of the MCCB. A measuring system and an evaluation technique for the dielectric recovery strength of the MCCB are described. By using this system and method, the measurement to find out the dielectric recovery characteristics after current-zero for ready-made products is done and it is confirmed that which internal structure of the MCCB affects the dielectric recovery characteristics.

Study on the Dynamic Modeling of MCCB (배선용 차단기 개폐기구의 동특성 향상방안 및 해석)

  • Park, Jin-Young;Cho, Hea-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.315-320
    • /
    • 2012
  • Generally circuit devices of low voltage are as follows, ICCB, PCB and MCCB. Among them, MCCB is typically used because it has superior characteristics which fuses do not possess, such as safety, controllability and ability to collaborate with other devices. The MCCB plays vital role, it has to trip instantaneously when the fault is occurred as well as it must have high insulation capacity. Therefore in order to enhance the breaking capacity, the study of contact construction, contact tip and link are necessary. This paper shows dynamic modeling of mechanism part of MCCB using an exclusive analysis program, and embodies the research of improvement of mechanism performance.

Development of Contact System in 460[V]/225[A]/50[kA] Molded Case Circuit Breaker (460[V]/225[A]/50[kA] 한류형 배선용 차단기 소호부 개발)

  • 최영길;구태근;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.137-144
    • /
    • 2002
  • Low voltage circuit breakers which interrupt rapidly and raise the reliability of power supply are widely used in power distribution systems. In the paper, it has been investigated how much interrupting capability is improved by correcting the shape of the contact system in molded case circuit breaker(below MCCB), especially arc runner. Prior to the interrupting testing, it is necessary for the optimum design to analyze electromagnetic forces on the contact system generated by current and flux density. This paper presents both our computational analysis and test results on contact system in MCCB.

Study of the Application of PTC elements for Molded Case Circuit Breakers (소형 배선용차단기에 PTC 소자 적용에 관한 연구)

  • Kim, K.S.;Lee, S.S.;Lim, K.J.;Kang, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.376-377
    • /
    • 2008
  • 저압계동의 고장전류를 차단하기 위해서, 기중차단기(ACB), 배선용차단기(MCCB) 등을 사용하고 있는데, 저압차단기는 저압계통의 고장전류를 차단할 수 있으나, 고장전류를 효과적으로 제한하지 못하며, 차단기 내부의 아킹시간이 상대적으로 길므로, 저압차단기는 물론 주변 전력기기에 전기적/열적/기계적 스트레스를 주게 된다. 또한 지속적인 부하의 증가로 인해 저압계통의 단락전류는 점점 증가하는 추세에 있으므로 저압계통은 물론 고압계통에서도 고장전류를 보다 빠르고 효과적으로 제한 및 차단을 할 수 있는 한류형 차단기가 제안되고 있다. 저압계통의 경우, 정온도계수(Positive Temperature Coefficient, PTC) 특성을 가지는 한류소자를 기존 차단기에 직렬 혹은 병렬로 연결하여 저압계동의 고장전류를 매우 빠르고 효과적으로 제한 및 차단하는 추세이다. 본 연구에서는 정온도계수 특성을 가지는 소자를 이용하여 소형 저압차단기의 차단용량 향상에 기여할 수 있는지 검증하였다.

  • PDF

Analysis of Contact System in 460[V]/400[A]/85[kA] Molded Case Circuit Breakers (460[V]/400[A]/85[kA] 한류형 배선용 차단기 소호부 해석)

  • Lee, Seung-Su;Her, June;Yoon, Jae-Hun;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.364-365
    • /
    • 2008
  • 배선용 차단기(MCCB)는 신속한 고장전류 차단과 전원시스템의 안정성을 확보하기 위해 배선시스템에 폭넓게 사용되고 있다. 배선용 차단기(MCCB)는 과부하 및 단로 등의 이상 상태시 전류를 차단하는 기구로, 오작동 시에는 중대한 사고를 초래한다. 따라서 배선용 차단기에 대한 보호성능의 항상, 신뢰성의 향상의 시장요구에 부응하기 위해 본 논문에서는 소호부 형상에 따른 차단성능을 파악하고 이를 통하여 성능향상을 이루고자 3차원 유한요소 프로그램(MAX-WELL)을 이용한 자계해석을 통해 차단성능 평가를 하였다. 이를 통하여 배선용 차단기의 소호부 설계시 차단성능 검증과 제품의 소형화 및 고성능화를 이끌고자 한다.

  • PDF

Development of 460[V]/225[A]/50[kA] Contact System in Current Limiting MCCB using an estimation and analysis method for the interrupting capability (차단성능 평가해석기법을 적용한 강자계 구동방식의 460[V]/225[A]/50[kA]급 한류형 MCCB 소호부 개발)

  • 최영길;박찬교
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.78-84
    • /
    • 2004
  • Low voltage circuit breakers which interrupt rapidly and raise the reliability of power supply are widely used in power distribution systems. In the paper, it has been investigated how much interrupting capability is improved by correcting the shape of the contact system in molded case circuit breaker(below MCCB), especially contacts and arc runner. Prior to the interrupting testing, it is necessary for the optimum design tc analyze electromagnetic forces on the contact system generated by current and flux density. This paper presents both our computational analysis and test results on contact system in MCCB