• Title/Summary/Keyword: Mold core

Search Result 245, Processing Time 0.052 seconds

An Experimental Study on the Motor-Core Die Development of HEV Traction Motor (하이브리드(HEV) 구동 모터용 모터-코어 금형 개발에 관한 실험적 연구)

  • Hong, Kyeong-Il;Kim, Se-Hwan;Choi, Kyeo-Gwang;Jung, Hyun-Suk;Lim, Se-Jong
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.34-37
    • /
    • 2015
  • The HEV Traction Motor Core manufacturing technology is a core component of HEV Traction Motor Core (Iron Core) is a key technology for the manufacture of eco-friendly automotive industry is essential for the competitiveness of the country must obtain the technology. In this study, the HEV Motor Core of the Rotor manufacturing technology, the Stator manufacturing technology applied to Press Lamination Die and Core(Iron Core) was developed and the results are discussed.

  • PDF

A Study on Ultra Precision Grinding Characteristics of Tungsten Carbide $LCU\_CL$ Core (초경합금 소재 $LCU\_CL$ 코어의 초정밀 연삭 특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Lee Bongju
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.307-312
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.

Prediction of A Rise in Temperature Distribution of Mold Transformer for Power Distribution System (배전용 몰드변압기에 대한 상승 온도 분포 예측)

  • Lee, Jeong-Keun;Kim, Ji-Ho;Lee, Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.391-394
    • /
    • 2009
  • In this paper, achieved rise temperature distribution about degradation phenomenon of 2 MVA distribution mold transformer using finite element method (FEM). Usually, life of transformer is depended on temperature distribution of specification region than thermal special quality of transformer interior. Specially, life of transformer by decline of dielectric strength decreases rapidly in case rise by strangeness transformer interior hot spot temperature value permits. Because calculating high-voltage winding and low-voltage winding of mold transformer and Joule's loss of core for improvement these life, forecasted heat source, and high-voltage winding and low-voltage winding of mold transformer and rise temperature distribution of core for supply of electric power and temperature distribution of highest point on the basis of the result Also, calculated temperature rise limit of mold transformer and permission maximum temperature using analysis by electron miracle heat source alculate and forecasted rise temperature distribution by heat source of thermal analysis with calculated result.

  • PDF

Design of Side Cores of Plastic Injection Mold with Interference Check (플라스틱 사출금형의 간섭 검사에 의한 사이드 코어의 설계)

  • 신기훈;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1064-1074
    • /
    • 1992
  • Eliminating the under-cut caused by interference between a mold and a product in designing a mold for in jection molding processes is a very important problem. In general, the under-cut problem can be avoided by side cores which are the principal members of a mold assembly. In this research, a procedure has been developed by which the side cores and the corresponding core and cavity plates of a mold are generated after identifying the mold faces preventing product faces from moving while being discharged. The characteristic features of the procedure suggested in this paper are as follows. One is that the interference faces between the product and the mold are derived only from the core plate(or cavity plate) alone without considering the product together. The other is that the algorithm in the designing of side cores and modifying molds, is very efficient because it uses Euler operations instead of Boolean operations.

Relation of weld-quality and core shape in injection molding (사출성형 시 코어 형상과 웰드품질과의 관계)

  • Lee, Gyu-Ho;Choi, Woo-Su;Noh, Keon-Cheol;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • The injection molding is used in more than 70% of total production of plastic products. Weld line in injection molded part is one of the defects in injection molding process. Weld line deteriorates not only appearance quality but also mechanical property. In this study weld quality has been examined according to the injection processing temperature, materials and mold designs. We selected four different materials such as PA, PP, ABS and PS as experimental materials. Weld quality increased as injection processing temperature increases. It was more dependent on materials flow ability. As a result, weld quality incase of rectangular core is better than circular core.

  • PDF

Form Error Compensation of Aspheric lens considering Thermal Deformation on Glass Molding Press ( I ) (Glass Lens 가압성형의 열 변형에 의한 비구면 Lens 형상보정 ( I ))

  • Lee, Hak-Suk;Lee, Dong-Kil;Park, Jong-Rak;Kim, Hye-Jung;Kim, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.354-354
    • /
    • 2008
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized is gradually increasing. Generally, the aspheric glass lens is manufactured by GMP(Grass Molding Press) method using WC(tungsten carbide) mold core. In this study, the thermal deformation which occurs in the cooling step of GMP was considered, and it was compensated the form of mold core. The lens which was molded by compensated mold core was satisfied that can be applied to the actual specifications.

  • PDF