• Title/Summary/Keyword: Mold Design

Search Result 1,164, Processing Time 0.035 seconds

The Design and Performance Test of Mold Transformer for Outdoor Pole (50 kVA 주상용 몰드변압기의 설계 및 특성평가)

  • Cho, Han-Goo;Lee, Un-Yong;HwangBo, Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF

A Study on Development of Safety Shell Molds for Precision Machining of Sand Mold Casting Product (사형제품 기계가공을 위한 안전금형 개발에 관한 연구)

  • Choi, Jae-Hoon;Nam, Seung-Done
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • An accident from machine work is often fatal to the worker. This accident is mostly preventable through perfect process jig. In case of this machine work, however, the disaster frequently occurred because of the design which is not considered the beginning of product design, post-process and mass process of production. As for sand casting method, this has the merits of the production; the product is easily produced by manual labor. On the other hand, this method has the demerits of a bigger dimensional error contrary to other mass process of production. When the sand casting product is in machine work, there are various problems such as unsafe fix and excessive cutting, product desorption and rapid life depreciation of equipment and tools. Considering the characteristics of sand casting method, it is accepted as difficulty to improve the problems. In this study, it suggests shell mold method for mold instead of the machine work after the sand casting of the circle shape container product. And the surface accomplishes the following average of surface roughness Ra$9.94{\mu}m$ of machine work with the casting of flask mold by shell mold method. In accordance with the simplification of processing process and reducing the average thickness variation by mass production of product with detailed appearance, it has a good influence on safety accident prevention caused by production and damaged product. It is confirmed that making higher degree of size precision of all machine work product is possible to increase the safety and productivity, reduce the processing process and improve environment.

Mold Structure using 3plate type mold base for Recycling (재활용 몰드베이스를 이용한 3매 구성 사출금형구조)

  • 정영득;박태원;권윤숙;송준엽;제덕근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.92-96
    • /
    • 1997
  • Recently, the life cycle of products is rapidly shortened and then the disposal of the used mold applied in development of the product is a difficult thing. In this study, we proposed the feasibility of new 3plate type mold base for recycling by analyzing of the existing standard mold base. And in order to apply new 3plate mold base in mold design and making, we constructed the specifications for parts such as runner stripper plate, cavity plate, core plate and slide core unit. Also, we confirmed the possibility of recycling mold base by testing a used 3plate mold for a Audio front pannel.

  • PDF

Mold Cavity Filling by Gating Design in Vacuum Molding Process (진공흡입주형 주조법에서 탕구방안에 따른 주형 충전 양상)

  • Kang, Bok-Hyun;Kim, Ki-Young;Kim, Myung-Han;Hong, Young-Myung
    • Journal of Korea Foundry Society
    • /
    • v.27 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Vacuum molding process(V-process) has several benefits such as a lower total production cost and a high quality casting comparing to the conventional sand molding. Influence of the gating design on the molten metal flow was investigated in this study. General criteria for the gating design of the castings and commercial codes for the flow and solidification analysis were used to attain the optimized gating design in V-process. Though mold cavity was filled smoothly under the low initial velocity of molten metal, molten metal dashed against the upper part of the mold before the completion of the mold filling with higher initial molten metal velocity and fell soon. This phenomenon may affect collapsing the mold shape, however it is thought that the possibility of burning out of the vinyl by the molten metal is not so high because vinyl is coated with refractory material.

A study on the defects of die casting mold for air-motor housings and on problem-solving measures (에어모터 하우징 양산용 다이캐스팅 금형의 불량과 대책에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • HI-WORTH T-32, a non-powered plasma cutter, is a portable cutter that utilizes compressor-plasma inverter. With a special air-pressure piston, the cutter is semiautomatic. When they were produced by die casting dies, the bodies or housings of the cutter have defects about 100 percent of defect rate due to blisters and thermal deformation. Therefore, they are produced by mechanical machining, which leads to a hike in material and machining costs and to the loss of productivity. And companies are left with insignificant profit margins. Besides mechanical machining, this study proposes to modify defective mold and cut down defective rate and boost productivity.

  • PDF

Development of a new injection mold structure for internal gears (새로운 내측기어 성형용 사출성형 금형구조의 개발)

  • Kwon, Youn-Suk;Je, Deok-Keun;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.129-133
    • /
    • 2008
  • As a rotating machine element, plastic gears are more and more widely used in such as industrial machine element, since plastic gear is lighter, higher wear-resistance, and higher vibration absorbing ability than metal gears. When operating plastic parts, tooth breakage and fatigue life shortened due to increasing number of applying load and tooth flank temperature rising, such that accuracy of plastic gears is divided from allowable range to cause vibration and noise. On this study, a internal plastic gears are developed which improved the filling balance molding process by a new injection mold structure. The new mold structure called HR3P(hot runner type 3plate mold). As the result from this studies, we obtained a very accurate roundness internal gears by using design of experiment.

  • PDF

Dynamic Behavior Characteristics of Brass Mold at High Strain Rates (고변형율에서 황동 사출금형의 동적 거동 특성)

  • Kim, seon yong;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • Mechanical properties of the materials used for mold and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically loaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, the dynamic deformation behavior of a brass under high strain rate compressive loading conditions has been determined using the SHPB technique.

  • PDF

Direct Machining for Outs ole Mold of Shoes Using Reverse Engineering (역설계를 이용한 신발 밑창 금형의 직접 가공)

  • 염정노;박용복
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.167-174
    • /
    • 2003
  • The outsole mold of the shoes has been manufactured using electro-discharge machining by graphite electrode or using casting etc. The study is concerned with the measurement of the mold of the shoes in use, the modeling by CAD/CAM system, the generation of NC data and the machining by CNC machining center. The machining has been performed from the data type obtained from 3-dimensional measurement points of mold in use. The ball end mill and the engraving cutter is used as cutter and the cutting conditions are adjusted according to the shapes and sizes of the cutter and part in cutting. The method has proposed the possibility for higher productivity and quality on mold-manufacturing of shoes outsole.

Analysis for injection molding and in-mold coating of automotive armrests (자동차 암레스트의 사출성형과 인몰드코팅에 관한 해석)

  • Park, Jong-Lak;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • Analytical and experimental study were carried out in order to achieve simultaneous coating and injection molding of an automotive armrest. A mold was designed to be included one core and two cavities, which were composed of a substrate cavity and a coating cavity. The materials used were PC/ABS for substrate and 2-component Polyurethane for coating. The predicted flow patterns were in good agreement with experimental results in injection molding and in-mold coating. Based on analysis and experiment, it was found that the optimal processing conditions were packing pressure of 90MPa and holding time of 7sec.

A study on the residual stress and spring back of thermoformed films (열성형 공정에서 발생하는 필름의 잔류응력 및 스프링 백에 관한 연구)

  • Park, Du-Yong;Park, Dong-Hyun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2022
  • Thermoforming is a plastic manufacturing process that applies a force to stretch a film of heated thermoplastic material over an engineered mold to create a 3-dimensional shape. After forming, the shaped part can then be trimmed and finished to specification to meet an end-user's requirements. The process and thermoplastic materials are extremely versatile and can be utilized to manufacture parts for a very wide range of applications. In this study, based on K-BKZ nonlinear viscoelastic model, thermoforming process analysis was performed for an interior room-lamp. The predicted thickness was minimum at the corner of a molded film, and maximum at the center of the bottom. By using the Taguchi method of design of experiments, the effects of process conditions on residual stresses were investigated. The dominant factors were the liner thickness and the film heating time. As the thickness of the liner increased, the residual stress decreased. And it was found that the residual stress decreased significantly when the film heating temperature was higher than the glass transition temperature. A thermoforming mold and a trimming mold were manufactured, and the spring back was investigated through experiments. The dominant factors were film heating time, liner thickness, and lower mold temperature. As the film heating time and liner thickness increased, the spring back decreased. In addition, it was found that the spring back decreased as the lower mold temperature increased.