• Title/Summary/Keyword: Mold Crack

Search Result 71, Processing Time 0.023 seconds

Research on Ultra-precision Grinding Work of Silicon Carbide (실리콘 카바이드의 초정밀 연삭 가공에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.58-63
    • /
    • 2009
  • Silicon carbide (SiC) has been used for many engineering applications because of their high strength at high temperatures and high resistances to chemical degradation. SiC is very useful especially for a glass lens mold whose components demanded to the machining with good surface finish and low surface damage. The performance and reliability of optical components are strongly influenced by the surface damage of SiC during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified SiC glass lens mold. Usually the major form of damage in grinding of SiC is a crack occurs at surface and subsurface. The energy introduced in the layers close to the surface leads to the formation of these cracks. The experimental studies have been carried out to get optimum conditions for grinding of silicon carbide. To get the required qualified surface finish in grinding of SiC, the selection of type of the wheel is also important. Grinding processes of sintered SiC work-pieces is carried out with varying wheel type, depth of cut and feed using diamond wheel. The machining result of the surface roughness and the number of flaws, have been analyzed by use of surface profilers and SEM.

Optimum Design of Rubber Injection Molding Process (고무사출성형의 적정설계)

  • Lee, Eun-Ju;Lim, Kwang-Hee;Giang, Vu Tai
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • The optimum mold design and the optimum process condition were constructed upon executing process simulation of rubber injection molding with the commercial CAE program of MOLDFLOW (Ver. 5.2) in order to solve the process-problems of K company relating to cracks, which occurs at the inner cavity wall of C. V. joint boots. As a result it was confirmed that the real cracks occurs at the exactly same position of the cavity as exhibits the defects of weld and meld line and unsatisfactory curing according to the result of simulation. In order to prevent the occurrence of weld and meld line at the defect-position, the location of gate was altered to the optimum position of the cavity. Consequently the filling pattern was established to minimize the degree of the melt-fronts confronting or the melt-flows melding to prevent the occurrence of weld and meld line at the defect-position. It was observed that both gate-positions to maximize the degree of the formation of weld and meld line and air traps are located, respectively, in opposite direction each other with reference to the optimum gate position. In addition, the temperature of mold was raised by $10^{\circ}C$ and maintained at $170^{\circ}C$ for satisfactory curing.

An Experimental study on field application of Permanent form (비탈형 영구거푸집의 현장 적용을 위한 실험적 연구)

  • 정근호;김우재;이영도;정재영;정상진
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.1
    • /
    • pp.143-150
    • /
    • 2001
  • Permanent-Form is one of system forms for reducing human labor, work costs, oscillation, noise, construction wastes and so on. Permanent-Form is made from precast method in facilities, and carried in construction site to assemble with no demolding. The biggest expense to produce permanent-Form is about manufacturing mold. This papers about structural efficiency evaluation, construction efficiency test. The result of this study is below. (1) In the compressive strength test of column. Fly ash specimen and polymer specimen's strength developed as each 8%, 14% to comparison with standard specimen. The reason of this result from form section area increase and form's reinforcing bar (2) The Degree of column crack in permanent form is lower than another one's The glass fiber's fiber reinforcement effect brings like this. (3) In the flexural load test of beam, the early crack load and maximum load of permanent form use specimen showed 20% higher than standard specimen's. (4) In field application experiment, an constructional error is satisfied with the allowable margin of error, $\pm$5mm (5) When the concrete is placed into the form inside, The transformation degree of permanent form is lower than plywood form's. (6) The concrete packing ability of permanent form is satisfactory. (7) The bonding strength of permanent form shows enough strength - 6kgf/$\textrm{cm}^2$.

  • PDF

The Characteristics of Strength Development and Curing Cycle of the Steam Cured Concrete (증기양생 콘크리트의 양생온도주기와 강도발현 특성)

  • Kim, Kwang-Don;Kim, Choon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.63-71
    • /
    • 2010
  • This paper is about a research of steam curing which is one of the curing methods for accelerating the early-age strength of pre-cast concrete. With cylinder mold and mock-up specimen, the research was executed to study the best cycle of steam curing temperature through quantifying cycle of steam curing and maximum temperature, while the required strength is developed under the early-age. Moreover, causes and measurements for the high temperature of concrete, which is due to the steam curing, and the crack, which occurs when removing steel form, are stated. Ultimately, the economical method of producing, which satisfies early-age strength development and quality assurance while manufacturing PC structure, is stated.

A study of minimizing edge chipping of coverglass using MR Polishing (MR Polishing을 이용한 커버글라스의 굽힘강도 향상에 관한 연구)

  • Lee, Jeong-woo;Kim, Ji-Hun;Lim, Dong-Wook;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.50-54
    • /
    • 2022
  • Coverglass of electronic equipments is thinner and slimmer, so the glass must have good bending strength. In these days, the polishing edge of glass is used by solid tool like grinding wheel. But solid tool leave micro crack or edge chipping in edge of glass. MR polishing is an optimal method by polishing edge of glass. MR polishing is used MR fluid that is a liquid tool. MR polishing doesn't leave tool path or residual stress, micro crack and edge chipping unlike grinding wheel polishing. In this paper, the results of grinding and MR polishing were compared and analyzed to improve bending strength by minimizing edge chipping of cover glass. It was derived that the depth and size of cracks have a significant influence on the bending strength of the glass edge. The edges of the glass using MR grinding were analyzed to have a better surface and higher bending strength than the glass using abrasive wheel grinding. It was confirmed that MR polishing had an effect on strength improvement by effectively removing cracks in the specimen.

The Effects of Copper Electroplating Bath on Fabrication of Fine Copper Lines on Polyimide Film Using Semi-additive Method (Semi-additive 방법을 이용한 폴리이미드 필름 상의 미세 구리배선 제작 시 도금액의 영향)

  • Byun Sung-Sup;Lee Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.9-13
    • /
    • 2006
  • The copper lines in COF are usually fabricated by subtractive method. As the width of lines are smaller, the subtractive method has a lateral etching problems. In semi-additive method, copper lines are fabricated by lithographic technique followed by electroplating method. Fine line patterns of $10-40{\mu}m$ were used for this study. Two different types of thick photoresist, AZ4620 and PMER900, were employed for PR mold. Copper lines were fabricated by electroplating method. The crack were found in fine copper lines due to high residual stress when normal copper electroplating bath were used. The via filling copper electroplating bath were replaced the normal electroplating bath and then cracks were not found in the fine copper lines. During substrate etching, the lateral etching of copper lines were not occurred.

  • PDF

A Study on Thermal Insulation Property and Thermal Crack Protection for Expanded Perlite Inorganic Composites (팽창진주암 무기복합재에서의 단열성능 및 열크랙 방지에 관한 연구)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3286-3291
    • /
    • 2014
  • A study on the crack protection and thermal insulation properties of the expanded perlite inorganic composites was performed. Mixed expanded perlite with a water glass was stabilized for 24 hrs at room temperature in the mold and, thereafter, converted into a massive foamed body through complete drying process at $150^{\circ}C$. Aluminum phosphate and micron size mica powder were used as a reaction accelerator and a stabilizer for thermal crack, respectively. Especially, use of mica exhibited a remarkable effect on the protection of thermal crack at higher temperature over $500^{\circ}C$, and thermal conductivity of the composites was enhanced with higher perlite contents, showing ca. 0.09 W/mK for the sample of 100/200/10/1.5 water glass/perlite/mica/Al phosphate by weight. A severe dimensional deformation of the composite materials was observed over $600^{\circ}C$, however, showing a temperature limitation for a practical application. The facts were considered as the results from the glass transition temperature of the water glass, of which main component is sodium silicate.

A Field Investigation of Defect Type for Development of Maintenance Manual of Han-ok (한옥 유지관리매뉴얼 개발을 위한 결함 유형 현장 조사)

  • Lee, Jong Shin;Choi, Gwang Sik;Yang, Jeong Moo
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.3
    • /
    • pp.302-308
    • /
    • 2013
  • To collection of field data for development of maintenance manual of Han-ok, we investigated defects which occurred in members of Han-ok by field investigation. The noticeable defects were wood cracks, gaps that developed between wood pillar and wall or wood window frame and tenon joints. The most common biological defect was blue stain which was created in log. The mold generation was observed on exterior wood and wall which get wet by precipitation. The gaps between members of Han-ok pointed out as defect that is urgently improved by residents of Han-ok. The reason is mainly due to poor of insulation in winter by bad confidentiality. The maintenance work of defect such as gap was conducted personally. As a result, the repair parts were ugly for unfamiliar repair work.

  • PDF

A study on the cracking of tunnel lining by measurement and numerical analysis (계측 및 수치해석을 통한 터널 라이닝의 균열 원인 연구)

  • Hwang, Hak;Jung, Hun-Chul;Kim, Yu-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.33-40
    • /
    • 2001
  • In this research, the cracking of tunnel concrete lining was investigated and analyzed through long-term measurement and nonlinear numerical analysis. For one year after the casting of lining, the stresses and strains were measured by the sensors installed in hard rock tunnel lining. The measurements showed that only small stresses which were less than cracking stress occurred in every survey sections regardless of sensor directions. It could be induced that the external load applied to the lining was small or ignorable. Also, it was carried out short-term numerical analysis based on such site condition as ambient temperature, the- degree of overbreak and mold staying period. Long-term numerical analysis based on creep & shrinkage and nonlinear cracking was carried out. The output showed that construction condition and ambient environments could make the lining concrete crack without external loads. The cracks formed in this process does not indicate the structural instability of the tunnel.

  • PDF

Fracture Behavior of Glass/Resin/Glass Sandwich Structures with Different Resin Thicknesses (서로 다른 레진 두께를 갖는 유리/레진/유리샌드위치 구조의 파괴거동)

  • Park, Jae-Hong;Lee, Eu-Gene;Kim, Tae-Woo;Yim, Hong-Jae;Lee, Kee-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1849-1856
    • /
    • 2010
  • Glass/resin/glass laminate structures are used in the automobile, biological, and display industries. The sandwich structures are used in the micro/nanoimprint process to fabricate a variety of functional components and devices in fields such as display, optics, MEMS, and bioindustry. In the process, micrometer- or nanometer-scale patterns are transferred onto the substrate using UV curing resins. The demodling process has an important impact on productivity. In this study, we investigated the fracture behavior of glass/resin/glass laminates fabricated via UV curing. We performed measurements of the adhesion force and the interfacial energy between the mold and resin materials using the four-point flexural test. The bending-test measurements and the load-displacement curves of the laminates indicate that the fracture behavior is influenced by the interfacial energy between the mold and resin and the resin thickness.