• Title/Summary/Keyword: Moisture Transfer Model

Search Result 92, Processing Time 0.027 seconds

Simulation of the paper drying using CFD field Model (CFD를 이용한 종이건조의 전산모사)

  • Im, Jeong-Hun;Lee, Seong-Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.127-139
    • /
    • 2004
  • The process of papermaking involves water removal on the paper machine wire, in the press section and in the dryer section. In the dryer section, liquid water in the wet web is removed mainly by evaporation. In conventional machine this is achieved by passing the web over a number of steam heated dryer rolls. A drying process of paper on a heated cylinder roll calculated based on a 1-dimensional model which concerns unsteady heat and mass transfer in the direction of paper thickness. In this study, Prediction of moisture contents average paper sheet temperature and volume fraction along a series of cylinder. Independently, developed models is compared using the same reference data. The model is implemented in CFD code, FLUENT, using user-define-function(UDFs).

  • PDF

Deterioration of Structural Capacity of Fire-Damaged Reinforced Concrete Column (화해를 입은 철근콘크리트 기둥의 구조성능 저하)

  • 이차돈;신영수;홍성걸;이승환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.371-374
    • /
    • 2003
  • The degree of changes in mechanical properties of fire-damaged reinforced concrete column depends mostly on sectional geometry, duration exposed to fire, and moisture containment. In order to reasonably assess the deterioration of structural capacity of fire-damaged reinforced concrete column, it is necessary to develop a theoretical model predicting column behavior based on nonlinear heat transfer equation in addition to the traditional mechanics. This research focuses on the development of theoretical model to predict moment-curvature relations of fire-damaged reinforced column. The model is used for the assessment of structural capacity of fire-damaged column in terms of moment-curvature relations and PM interaction curves.

  • PDF

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Development of Prediction Models of Dressroom Surface Condensation - A nodal network model and a data-driven model - (드레스룸 표면 결로 발생 예측 모델 개발 - 노달 모델과 데이터 기반 모델 -)

  • Ju, Eun Ji;Lee, June Hae;Park, Cheol-Soo;Yeo, Myoung Souk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • The authors developed a nodal network model that simulates the flow of moist air and the thermal behavior of a target area. The nodal network model was enhanced using a parameter estimation technique based on the measured temperature, humidity, and schedule data. However, the nodal model is not good enough for predicting humidity of the target space, having 55.6% of CVRMSE. It is because re-evaporation effect could not be modeled due to uncertain factors in the field measurement. Hence, a data-driven model was introduced using an artificial neural network (ANN). It was found that the data-driven model is suitable for predicting the condensation compared to the nodal model satisfying ASHRAE Guideline with 3.36% of CVRMSE for temprature, relative humidity, and surface temperature on average. The model will be embedded in automated devices for real-time predictive control, to minimize the risk of surface condensation at dressroom in an apartment housing.

Heat transfer of green timber wall panels (그린팀버월 패널의 열전달 특성)

  • Kim, Yun-Hui;Jang, Sang-Sik;Shin, Il-Joong
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • 20% of total energy use to sustain temperature of building inside. In this reasons, researchers effort to improve the thermal insulation capacity with new wall system. Using appropriate materials and consisting new wall system should considered in energy saving design. OSB(Oriented strand board), Larch lining board used to consist wall system. $2{\sim}6$ Larch lining board has tongue & groove shape for preventing moisture. Comparing with gypsum board and green timber lining board as interior sheathing material, temperature difference of Green timber wall system was bigger than temperature difference of gypsum board wall system. This aspects indicate that Green timber wall system was revealed higher thermal insulation property than gypsum board wall system. Gypsum board portion transfer heat easily because temperature difference gradient of gypsum board wall system was smaller than OSB wall system. Total temperature variation shape of G-4-S and G-6-S show similar model but, temperature variation shape in green timber wall portion assume a new aspect. The purpose of this study was that possibility of thermal insulation variation and new composition of wall system identify to improve thermal insulation performance. In the temperature case, this study shows possibility of improving thermal insulation performance. Humidity, sunshine and wind etc. should considered to determine building adiabatic properties.

Fire Resistance Performance of High Strength Concrete with 4 Deformation Factors (4변형 인자에 의한 고강도콘크리트의 내화성능 평가)

  • Lee, Tae Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.112-120
    • /
    • 2012
  • A numerical model considering the internal vaporization and the creep effect, in the form of a analytical program, for tracing the behavior of high strength concrete(HSC) members exposed to fire is presented. The two stages, i.e., spalling procedure and fire resistance time, associated with the thermal, moisture flow, creep and structural analysis, for the prediction of fire resistance behavior are explained. The use of the analytical program for tracing the response of HSC member from the initial pre-loading stage to collapse, due to fire, is demonstrated. Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member, so that the prediction method of the moisture distribution inside the concrete members at fire is developed. The validity of the numerical model used in this program is established by comparing the predictions from this program with results from others fire resistance tests. The analytical program can be used to predict the fire resistance of HSC members for any value of the significant parameters, such as load, sectional dimensions, member length, and concrete strength.

ADVANTAGES OF USING ARTIFICIAL NEURAL NETWORKS CALIBRATION TECHNIQUES TO NEAR-INFRARED AGRICULTURAL DATA

  • Buchmann, Nils-Bo;Ian A.Cowe
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1032-1032
    • /
    • 2001
  • Artificial Neural Network (ANN) calibration techniques have been used commercially for agricultural applications since the mid-nineties. Global models, based on transmission data from 850 to 1050 nm, are used routinely to measure protein and moisture in wheat and barley and also moisture in triticale, rye, and oats. These models are currently used commercially in approx. 15 countries throughout the world. Results concerning earlier European ANN models are being published elsewhere. Some of the findings from that study will be discussed here. ANN models have also been developed for coarsely ground samples of compound feed and feed ingredients, again measured in transmission mode from 850 to 1050 nm. The performance of models for pig- and poultry feed will be discussed briefly. These models were developed from a very large data set (more than 20,000 records), and cover a very broad range of finished products. The prediction curves are linear over the entire range for protein, fat moisture, fibre, and starch (measured only on poultry feed), and accuracy is in line with the performance of smaller models based on Partial Least Squares (PLS). A simple bias adjustment is sufficient for calibration transfer across instruments. Recently, we have investigated the possible use of ANN for a different type of NIR spectrometer, based on reflectance data from 1100 to 2500 nm. In one study, based on data for protein, fat, and moisture measured on unground compound feed samples, dedicated ANN models for specific product classes (cattle feed, pig feed, broiler feed, and layers feed) gave moderately better Standard Errors of Prediction (SEP) compared to modified PLS (MPLS). However, if the four product classes were combined into one general calibration model, the performance of the ANN model deteriorated only slightly compared to the class-specific models, while the SEP values for the MPLS predictions doubled. Brix value in molasses is a measure of sugar content. Even with a huge dataset, PLS models were not sufficiently accurate for commercial use. In contrast an ANN model based on the same data improved the accuracy considerably and straightened out non-linearity in the prediction plot. The work of Mr. David Funk (GIPSA, U. S. Department of Agriculture) who has studied the influence of various types of spectral distortions on ANN- and PLS models, thereby providing comparative information on the robustness of these models towards instrument differences, will be discussed. This study was based on data from different classes of North American wheat measured in transmission from 850 to 1050 nm. The distortions studied included the effect of absorbance offset pathlength variation, presence of stray light bandwidth, and wavelength stretch and offset (either individually or combined). It was shown that a global ANN model was much less sensitive to most perturbations than class-specific GIPSA PLS calibrations. It is concluded that ANN models based on large data sets offer substantial advantages over PLS models with respect to accuracy, range of materials that can be handled by a single calibration, stability, transferability, and sensitivity to perturbations.

  • PDF

Modeling for Vacuum Drying Characteristics of Onion Slices

  • Lee, Jun-Ho;Kim, Hui-Jeong
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1293-1297
    • /
    • 2009
  • In this study, drying kinetics of onion slices was examined in a laboratory scale vacuum dryer at an air temperature in a range of $50-70^{\circ}C$. Moisture transfer from onion slices was described by applying the Fick's diffusion model, and the effective diffusivity was calculated. Temperature dependency of the effective diffusivity during drying process obeyed the Arrhenius relationship. Effective diffusivity increased with increasing temperature and the activation energy for the onion slices was estimated to be 16.92 kJ/mol. The experimental drying data were used to fit 9 drying models, and drying rate constants and coefficients of models tested were determined by non-linear regression analysis. Estimations by the page and Two-term exponential models were in good agreement with the experimental data obtained.

Analysis of Joint Behavior in Cement Concrete Pavements (시멘트 콘크리트 포장체 줄눈부의 거동해석)

  • 변근주;이상민;임갑주;한봉완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.1-6
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the construction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have beem deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechanism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical program is developed using these joint models.

  • PDF

An Analysis of the Drought Period Using Non-Linear Water Balance Model and Palmer Drought Severity1 Index (비선형 물수지모형과 팔머가뭄심도지수를 이용한 가뭄지속기간 분석)

  • Lee, Jae-Su
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.533-542
    • /
    • 2001
  • In order to establish drought policy, the estimation of drought period for each drought situation should be preceded. Non-linear Water Balance Model(NWBM) and palmer Drought Severity Index (PDSI) can be used for analysis of drought period. As a water balance method considering moisture transfer between land surface and atmosphere, NWBM can be used to estimate transition time between dry and wet period induced by stochastic fluctuations. PDSI is also water balance method to show drought severity comparing actual precipitation with climatically appropriate precipitation based on precipitation and potential evapotranspiration. In this study, the drought periods are estimated using NWBM and PDSI for the Han River Basin. The drought periods according to the soil moisture estimated by NWBS and the drought periods according to drought severity index estimated by PDSI show similar trend. The estimated drought period from extreme drought to wet condition for the Han River Basin is about 3years.

  • PDF