• Title/Summary/Keyword: Mohr envelope

Search Result 15, Processing Time 0.026 seconds

Derivation of Mohr Envelope of Hoek-Brown Failure Criterion Using Non-Dimensional Stress Transformation (응력무차원화 변환을 이용한 Hoek-Brown 파괴함수의 Mohr 파괴포락선 유도)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2014
  • In the course of performing the stability analysis of rock structures, there are times when the strength of the Hoek-Brown rock mass needs to be understood in terms of the internal friction angle and cohesion. In this case, the original Hoek-Brown criteion, giving the relationship between ${\sigma}_1$ and ${\sigma}_3$ at failure, have to be transformed to the corresponding Mohr envelope. A new approach to derive the Mohr envelope of the Hoek-Brown criterion is suggested in this study. The new method is based on the Londe's transformation making the stress components dimensionless. The correctness of the derivation leading to the new ${\tau}-{\sigma}$ relationship is confirmed by comparing the calculation results with the Bray's solution through a verification example.

Estimation to Shear Strength of Basalt using Lade's Three-dimensional Failure Criterion (Lade의 3차원 파괴규준을 이용한 현무암의 전단강도 산정)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.19-27
    • /
    • 2010
  • In this study, a series of triaxial tests to Jeju basalt were carried out and then shear strength parameters of rock were estimated by the Lade's three-dimensional failure criterion. Also, the characteristics of shear strength parameters and failure plane which were estimated by the three-dimensional failure criterion were analyzed and this failure criterion was compared with the Mohr-Coulomb failure criterion. The variables of ${\eta}_1$ and m are derived from the relationship between ($I_1^3/I_3-27$) and ($P_a/I_1$) during the failure period using the Lade's three-dimensional failure criterion. The failure plane size of Tracy-basalt has the largest plane and that of Scoria has the smallest plane among other octahedral planes which is the three-dimensional failure plane. Also, the failure plane of Tracy-basalt is formed as a triangle and that of Scoria is formed as a circle among other octahedral planes. As the result of comparison with the triaxial test results and the Lade's failure envelope and the Mohr-Coulomb failure envelope, the Lade's failure envelope matched up under higher stress, while the Mohr-Coulomb failure envelope matched up under lower stress. Also, the Lade's three-dimensional failure plane is larger than the Mohr-Coulomb three-dimensional failure plane. It means that the shear strength parameters estimated by the Lade's failure criterion is larger than that of the Mohr-Coulomb failure criterion.

  • PDF

Approximate Shear Strength Formula Implied in the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴조건식에 내포된 전단강도 근사식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.426-441
    • /
    • 2018
  • Recently, the generalized Hoek-Brown (GHB) failure criterion has been actively employed in various rock engineering calculations, but the analytical form of the corresponding Mohr failure envelope is not available, making it difficult to extend the application of the GHB criterion. In order to overcome this disadvantage, this study proposes a new method to express the tangential friction angle as an explicit function of normal stress by invoking the polynomial best-fitting to the relationship between normal stress and tangent friction angle implied in the GHB failure function. If this normal stress - tangential friction angle relationship is best-fitted with linear or quadratic polynomial function, it is possible to find the analytical root for tangential friction angle. Subsequently, incorporating the root into the relationship between shear stress and tangential friction angle accomplishes the derivation of the approximate Mohr envelope for the GHB criterion. It is demonstrated that the derived approximate Mohr failure envelopes are very accurate in the entire range of GSI value.

Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane

  • Mohammadi, M.;Tavakoli, H.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.115-124
    • /
    • 2015
  • Determination of mobilized shear strength parameters (that identify stresses on the failure plane) is required for analyzing the stability by limit equilibrium method. Generalized Hoek-Brown (GHB) and Mohr-Coulomb (MC) failure criteria are usually used for obtaining stresses on the plane of failure. In the present paper, the applicability of these criteria for determining the stresses on failure plane is investigated. The comparison is based on stresses on the real failure plane which are obtained from the Mohr stress circle. To do so, 18 sets of data (consist of principal stresses and angle of failure plane) presented in the literature are used. In addition, the values account for (VAF) and the root mean square error (RMSE) indices were calculated to check the determination performance of the obtained results. Values of VAF and RMSE for the normal stresses on the failure plane evaluated from MC are 49% and 31.5 where for GHB are 55% and 30.5, respectively. Also, for the shear stresses on failure plane, they are 74% and 36 for MC, 76% and 34.5 for GHB. Results show that the obtained stresses and angles of failure plane for each criterion differ from real ones, but GHB results are closer to the empirical results. Also, it is inferred that results are affected by the failure envelope not real failure plane. Therefore, obtained shear strength parameters are not mobilized. Finally, a multivariable regressed relation is presented for determining the stresses on the failure plane.

Evaluation Method for Non-linear Shear Strength of Gravel Materials (자갈질 재료의 비선형적 전단강도 특성 평가법)

  • Shin, Dong-Hoon;Cho, Seong-Eun;Lim, Eun-Sang;Park, Han-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.288-298
    • /
    • 2009
  • It is well known that the peak strength envelope of geomaterials with no cohesion, such as sand, gravel and rockfill, exhibits significant curvature over a range of stresses. In a practical design of slope, however, the linear Mohr-Coulomb's failure envelope is used as a failure criterion and consequently gives inaccurate safety factors, especially for some ranges of small normal stresses on shallow failure surfaces. Necessity of a nonlinear shear strength envelope in slope stability analysis is on this point. Hence, this study describes how to evaluate nonlinear shear strength of gravel fill materials using the results of large triaxial tests under consolidated-drained condition, and compares the safety factors from slope stability analyses for a homogeneous gravel fill or rockfill embankment incorporating the non-linearity of strength, so as to show its effects on safety factors.

  • PDF

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters (강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.781-788
    • /
    • 2009
  • Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.

New Methods of Finite Element Postprocessing for Elasto-Plastic Behavior (탄소성 거동의 유한요소해석 후처리 방법)

  • Lee, Jae-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.487-499
    • /
    • 2009
  • The postprocessing technology has been advanced diversely to accommodate the tendency of increasingly refined and complicated practices of finite element modeling in pace with enhanced capabilities of computers and improved algorithm of equation solvers. As a result of such progresses in both hardware and software, it became practically meaningful to inspect and analyze the elasto-plastic behavior using the intermediate results from the increasing number of incremental and iterative processes. This paper is concerned about the new methods of postprocessing with computer graphic visualization of elasto-plastic behavior on the basis of the theoretically reorganized analysis results. This paper proposes a new method of rendering the plastic zone, and new approaches of analyzing and interpreting the elasto-plastic behavior using the graphical information visualized in the form of the yield surface and the stress path, or in the form of the Mohr circles and the failure envelope.

Estimation to the Strength of Basalt in Jeju Island according to Rock Failure Criterions (암석의 파괴규준에 따른 제주도 현무암의 강도 산정)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.153-163
    • /
    • 2009
  • In this study, a series of triaxial tests on Jeju basalt were carried out and then rock strength parameters were estimated by the Mohr-Coulomb failure criterion and the Hoek-Brown failure criterion using the test results. The characteristics of both failure criterions were investigated through comparing the estimated rock strength parameters. As the result of the Mohr-Coulomb criterion, the cohesions and the internal friction angles are determined as 5.35 MPa and $50.25^{\circ}$ of Pyoseonri basalt, 16.99 MPa and $60.66^{\circ}$ of Trachy-basalt, and 2.33 MPa and $37.05^{\circ}$ of Scoria, respectively. The cohesions and internal friction angles were estimated by the Hoek-Brown failure criterion in the basis of the results of regression analysis. The cohesions and the internal friction angles are determined as 4.77 MPa and $52.47^{\circ}$ of Pyoseonri basalt, 14.69 MPa and $60.70^{\circ}$ of Trachy-basalt, and 2.22 MPa and $47.60^{\circ}$ of Scoria, respectively. As the result of comparison between the Mohr-Coulomb failure criterion and the failure envelope predicted by the Hoek-Brown criterion, the cohesion estimated by the Hoek-Brown criterion is usually lower than that obtained from the Mohr-Coulomb criterion, whereas the friction angle estimated by the Hoek-Brown criterion is higher than that obtained from the Mohr-Coulomb criterion.

A Simple Constitutive Model for Soil Liquefaction Analysis (액상화 해석을 위한 간단한 구성모델)

  • Park Sung-Sik;Kim Young-Su;Byrne P. M;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.27-35
    • /
    • 2005
  • Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.

A set of failure variables for analyzing stability of slopes and tunnels

  • Kim, Jun-Mo;Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Park, Sangho
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-189
    • /
    • 2020
  • A set of relatively simple five local shear and tension failure variables is presented and then implemented into a generalized poroelastic hydromechanical numerical model to analyze failure potential and stability of variably saturated geologic media. These five local shear and tension failure variables are formulated from geometrical relationships between the Mohr circle and the Mohr-Coulomb failure criterion superimposed with the tension cutoff, which approximate together the Mohr effective stress failure envelope. Finally, fully coupled groundwater flow and land deformation in two variably saturated geologic media, which are associated with a slope (Case 1) and a tunnel (Case 2), respectively, and their failure potential and stability are simulated using the resultant hydromechanical numerical model. The numerical simulation results of both cases show that shear and tension failure potential and stability of variably saturated geologic media can be analyzed numerically simply and efficiently and even better by using the five local shear and tension failure variables as a set than by using the conventional factors of safety against shear and tension failures only.