DOI QR코드

DOI QR Code

Derivation of Mohr Envelope of Hoek-Brown Failure Criterion Using Non-Dimensional Stress Transformation

응력무차원화 변환을 이용한 Hoek-Brown 파괴함수의 Mohr 파괴포락선 유도

  • Lee, Youn-Kyou (Department of Coastal Construction Engineering, Kunsan National University)
  • 이연규 (군산대학교 해양과학대학 해양건설공학과)
  • Received : 2014.01.24
  • Accepted : 2014.02.13
  • Published : 2014.02.28

Abstract

In the course of performing the stability analysis of rock structures, there are times when the strength of the Hoek-Brown rock mass needs to be understood in terms of the internal friction angle and cohesion. In this case, the original Hoek-Brown criteion, giving the relationship between ${\sigma}_1$ and ${\sigma}_3$ at failure, have to be transformed to the corresponding Mohr envelope. A new approach to derive the Mohr envelope of the Hoek-Brown criterion is suggested in this study. The new method is based on the Londe's transformation making the stress components dimensionless. The correctness of the derivation leading to the new ${\tau}-{\sigma}$ relationship is confirmed by comparing the calculation results with the Bray's solution through a verification example.

Hoek-Brown 파괴함수를 적용하여 암반구조물의 안정성 분석을 수행하는 경우 암반의 강도를 내부마찰각과 점착력을 이용하여 평가해야하는 경우가 있다. 이러한 경우 ${\sigma}_1-{\sigma}_3$ 관계로 표시된 본래의 Hoek-Brown 함수는 수직응력 (${\sigma}$)과 전단응력 (${\tau}$) 관계인 Mohr 파괴포락선으로 변환되어야 한다. 이 연구에서는 Hoek-Brown 파괴함수의 Mohr 파괴포락선을 구하는 새로운 방법을 제시하였다. 제시한 방법은 Londe (1988)가 제안한 응력무차원화 변환방법을 기초로 하였다. 검증 예제를 통해 새로 유도된 ${\sigma}-{\tau}$ 관계식이 Bray가 유도한 관계식과 정확히 일치한다는 것이 확인되었다.

Keywords

References

  1. Balmer, G., 1952, A general analytical solution for Mohr's envelope, Proc. ASTM, Vol. 52, pp. 1260-1271.
  2. Carraza-Torres, C. and Fairhurst, C., 1999, The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion, Int. J. Rock Mech. & Min. Sci., Vol. 36, pp. 777-809. https://doi.org/10.1016/S0148-9062(99)00047-9
  3. Choi, S.O. and Deb, D., 2005, Supplementation of generalized Hoek-Brown yield surface through the singularity adjustment in elastic-plastic analysis, Geosystem Engineering, Vol. 8(2), pp. 43-50. https://doi.org/10.1080/12269328.2005.10541235
  4. Hoek, E. and Brown, E.T., 1980, Empirical strength criterion for rock masses, J. Geotech. Eng. Div., ASCE, Vol. 106 (GT9), pp. 1013-1035.
  5. Hoek, E., 1983, Strength of jointed rock masses, Geotechnique, Vol. 33(3), pp. 187-223. https://doi.org/10.1680/geot.1983.33.3.187
  6. Hoek,E., Carranza-Torres, C. and Corkum, B., 2002, Hoek-Brown failure criterion - 2002 Edition, Proc. NARMS-TAC Conf., Toronto, Vol. 1, pp. 267-273.
  7. Kumar, P., 1998, Shear failure envelope of Hoek-Brown criterion for rock masses, Tunnell. and Underg. Space Tech., Vol. 13(4), pp. 453-458. https://doi.org/10.1016/S0886-7798(98)00088-1
  8. Lee, Y.-K, 2007, Prediction of strength for transversely isotropic rock based on critical plane approach, Tunnel & Undeground Space (J. Korean Soc. Rock Mech.), Vol. 17(2), pp. 119-127.
  9. Lee, Y.-K. and Choi, B.-H., 2012, Equivalent friction angle and cohesion of the generalized Hoek-Brown failure criterion in terms of stress invariants, Tunnel & Undeground Space (J. Korean Soc. Rock Mech.), Vol. 22(6), pp. 462-470. https://doi.org/10.7474/TUS.2012.22.6.462
  10. Londe, P., 1988, Discussion on the determination of the shear stress failure in rock masses, ASCE J. Geotech. Eng. Div., Vol. 14(3), pp. 374-376.
  11. Ucar, R., 1986, Determination of shear failure envelope in rock masses, J. Geotech. Eng. Div. ASCE, Vol. 112(3), pp. 303-315. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(303)
  12. Yang, X.-L., Li, L. and Yin, J.-H., 2004, Stability analysis of rock slopes with a modified Hoek-Brown failure criterion, Int. J. Num. Anal. Meth. Geomech., Vol. 28, pp. 181-190. https://doi.org/10.1002/nag.330

Cited by

  1. Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) vol.24, pp.4, 2014, https://doi.org/10.7474/TUS.2014.24.4.289
  2. Estimation of Equivalent Friction Angle and Cohesion of Near-Surface Rock Mass Using the Upper-Bound Solution for Bearing Capacity of Strip Footing vol.25, pp.3, 2015, https://doi.org/10.7474/TUS.2015.25.3.284