• Title/Summary/Keyword: Modulus function

Search Result 489, Processing Time 0.021 seconds

Mechanical behavior of Beishan granite samples with different slenderness ratios at high temperature

  • Zhang, Qiang;Li, Yanjing;Min, Ming;Jiang, Binsong
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.157-166
    • /
    • 2021
  • This paper aims at the temperature and slenderness ratio effects on physical and mechanical properties of Beishan granite. A series of uniaxial compression tests with various slenderness ratios and temperatures were carried out, and the acoustic emission signal was also collected. As the temperature increases, the fracture aperture of intercrystalline cracks gradually increases, and obvious transcrystalline cracks occurs when T > 600℃. The failure patterns change from tensile failure mode to ductile failure mode with the increasing temperature. The elastic modulus decreases with the temperature and increases with slenderness ratio, then tends to be a constant value when T = 1000℃. However, the peak strain has the opposite evolution as the elastic modulus under the effects of temperature and slenderness ratio. The uniaxial compression strength (UCS) changes a little for the low-temperature specimens of T < 400℃, but a significant decrease happens when T = 400℃ and 800℃ due to phase transitions of mineral. The evolution denotes that the critical brittle-ductile transition temperature increases with slenderness ratio, and the critical slenderness ratio corresponding to the characteristic mechanical behavior tends to be smaller with the increasing temperature. Additionally, the AE quantity also increases with temperature in an exponential function.

Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes

  • Mohammad Shamsi;Ehsan Moshtagh;Amir H. Vakili
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-545
    • /
    • 2023
  • The coupled soil-pile-structure seismic response is recently in the spotlight of researchers because of its extensive applications in the different fields of engineering such as bridges, offshore platforms, wind turbines, and buildings. In this paper, a simple analytical model is developed to evaluate the dynamic performance of seismically isolated bridges considering triple interactions of soil, piles, and bridges simultaneously. Novel expressions are proposed to present the dynamic behavior of pile groups in inhomogeneous soils with various shear modulus along with depth. Both cohesive and cohesionless soil deposits can be simulated by this analytical model with a generalized function of varied shear modulus along the soil depth belonging to an inhomogeneous stratum. The methodology is discussed in detail and validated by rigorous dynamic solution of 3D continuum modeling, and time history analysis of centrifuge tests. The proposed analytical model accuracy is guaranteed by the acceptable agreement between the experimental/numerical and analytical results. A comparison of the proposed linear model results with nonlinear centrifuge tests showed that during moderate (frequent) earthquakes the relative differences in responses of the superstructure and the pile cap can be ignored. However, during strong excitations, the response calculated in the linear time history analysis is always lower than the real conditions with the nonlinear behavior of the soil-pile-bridge system. The current simple and efficient method provides the accuracy and the least computational costs in comparison to the full three-dimensional analyses.

Assessment of Fatigue and Fracture on a Tee-Junction of LMFBR Piping Under Thermal Striping Phenomenon

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.267-275
    • /
    • 1999
  • This paper deals with the industrial problem of thermal striping damage on the French prototype fast breeder reactor, Phenix and it was studied in coordination with the research program of IAEA. The thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the tee-junction of the secondary piping using Green's function method and standard FEM is presented. The thermohydraulic(T/H) loading condition used in the present analysis is the random type thermal loads computed by T/H analysis on the turbulent mixing of the two flows with different temperatures. The thermomechanical fatigue damage was evaluated according to ASME code section 111 subsection NH. The results of the fatigue analysis showed that fatigue failure would occur at the welded joint within 90,000 hours of operation. The assessment for the fracture behavior of the welded joint showed that the crack would be initiated at an early stage in the operation. It took 42,698.9 hours for the crack to propagate up to 5 mm along the thickness direction. After then, however, the instability analysis, using tearing modulus, showed that the crack would be arrested, which was in agreement with the actual observation of the crack. An efficient analysis procedure using Green's function approach for the crack propagation problem under random type load was proposed in this study. The analysis results showed good agreement with those of the practical observations.

  • PDF

Direcy Design of Space Steel Frames Using practical Advanced Analysis (실용적인 고등해석을 이용한 공간 강뼈대구조물의 직접설계)

  • Kim, Seung Eock;Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2001
  • A direct design method of three-dimensional frames using practical advanced analysis is presented. In this method. separate member capacity checks encompassed by the code specifications are not required. because the stability of separate members and the structure as a whole can be rigorously treated in determining the maximum strength of the structures. Advanced analysis accounts for geometric and material nonlinearities. The geometric nonlinearlity is considered by the use of stability function. The material nonlinearity is accounted for using CRC tangent modulus and parabolic function. The load-displacements predicted by the proposed analysis compare well with those given by other approaches. A design example has been presented for a 22-story frame. The analysis results show that the proposed method is suitable for adoption in practice.

  • PDF

Transient rheological probing of PIB/hectorite-nanocomposites

  • Sung, Jun-Hee;Mewis, Jan;Moldenaers, Paula
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • Clay suspensions in liquid polymers exhibit a time-dependent behaviour that includes viscoelastic as well as thixotropic features. Because of the presence of interacting clay platelets, particulate networks can develop, which are broken down during flow and rebuild upon cessation of the flow. Here, the use of thixotropic techniques in probing flow-induced structures in nanocomposites is explored with data on a hectorite-poly(isobutylene) model system. By means of fast stress jump measurements the hydrodynamic contributions to the steady state stresses are determined as well as those caused by the stretching of the clay floes. Flow reversal measurements do not provide a clear indication of flow-induced anisotropy in the present case. The recovery of the clay microstructure upon cessation of flow is followed by means of overshoot and dynamic measurements. The development of a particulate network is detected by the appearance and growth of a low frequency plateau of the storage moduli. The modulus-frequency curves after various rest times collapse onto universal master curves, regardless of the pre-shear history or temperature. The scaling factors for this master curve are the crossover parameters. The crossover moduli are nearly a linear function of the crossover frequency, the relation being identical for recovery after shearing at different shear rates. This function depends, however, on temperature.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Activation of Stripper Solution by Plasma and Hardness/Modulus of Elasticity Change of the Surface (Plasma를 이용한 세정액의 활성화와 시료 표면의 탄성계수 및 강도 변화에 대한 연구)

  • Kim, Soo-In;Kim, Hyun-Woo;Noh, Seong-Cheol;Yoon, Duk-Jin;Chang, Hong-Jun;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • In the modem semiconductor industry, the progress that consumes the most capital and labor is cleansing process. Cleansing process is to remove impurities that can affect the operation of the device and deteriorate its function. Especially, Photoresist (PR) progress that etches the device always requires cleansing at the end of the progress. Also, HDI-PR (High-Dose Ion-implanted Photoresist) created from PR progress is difficult to remove. Thus, in modem IC cleansing, many steps of cleansing are used, including dry and wet cleansing. In this paper, we suggested to combine existing dry-cleansing and wet-cleansing, each represented by plasma cleansing and stripper solution, as Plasma Liquid-Vapor Activation (PLVA). This PLVA method enhances the effect of existing cleansing solution, and decreases the amount of solution and time required to strip. We stripped HDI-PR by activated solution and measured surface hardness and Young's modulus by Nano-indenter. Nano-indenter is the equipment that determines the hardness and the modulus of elasticity by indenting nano-sized tip with specific shape into the surface and measuring weight and z-axis displacement. We measured the change of surface hardness and Young's modulus before and after the cleansing. As a result, we found out that the surface hardness of the sample sharply decreased after the cleansing by plasma-activated PR stripper solution. It can be considered that if physical surface-cleansing process is inserted after this, more effective elimination of HDI-PR is possible.

RHEOLOGICAL PROPERTIES OF RESIN COMPOSITES ACCORDING TO THE CHANGE OF MONOMER AND FILLER COMPOSITIONS (단량체 및 무기질 filler 조성 변화에 따른 복합레진의 유변학적 특성)

  • Lee In-Bog;Lee Jong-Hyuck;Cho Byung-Hoon;Son Ho-Hyun;Lee Sang-Tag;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.520-531
    • /
    • 2004
  • The aim of this study was to investigate the effect of monomer and filler compositions on the rheological properties related to the handling characteristics of resin composites. Methods. Resin matrices that Bis-GMA as base monomer was blended with TEGDMA as diluent at various ratio were mixed with the Barium glass (0.7 um and 1.0 um), 0.04 um fumed silica and 0.5 um round silica. All used fillers were silane treated. In order to vary the viscosity of experimental composites, the type and content of incorporated fillers were changed, Using a rheometer, a steady shear test and a dynamic oscillatory shear test were used to evaluate the viscosity ($\eta$) of resin matrix, and the storage shear modulus (G'), the loss shear modulus (G"), the loss tangent ($tan{\delta}$) and the complex viscosity (${\eta}^*$) ofthe composites as a function of frequency ${\omega}{\;}={\;}0.1-100{\;}rad/s$. To investigate the effect of temperature on the viscosity of composites, a temperature sweep test was also undertaken. Results. Resin matrices were Newtonian fluid regardless of diluent concentration and all experimental composites exhibited pseudoplastic behavior with increasing shear rate. The viscosity of composites was exponentially increased with increasing filler volume%. In the same filler volume, the smaller the fillers were used, the higher the viscosities were. The effect of filler size on the viscosity was increased with increasing filler content. Increasing filler content reduced $tan{\delta}$ by increasing the G' further than the G". The viscosity of composites was decreased exponentially with increasing temperature.

A Performance Variation by Scaling Factor in NM-MMA Adaptive Equalization Algorithm (NM-MMA 적응 등화 알고리즘에서 Scaling Factor에 의한 성능 변화)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • This paper compare the adaptive equalization performance of NM-MMA (Novel Mixed-MMA) algorithm which using the mixed const function by scaling factor values. The mixed cost function of NM-MMA composed of the appropriate weighted addition of gradient vector in the MMA and SE-MMA cost function, and updating the tap coefficient based on these function, it is possible to improve the convergence speed and MSE value of current algorithm. The computer simulation was performed in the same channel, step size, SNR environment by changing the scaling factor, and its performance were compared appling the equalizer output constellation, residual isi, MD, MSE, SER. As a result of computer simulation, the residual values of performance index were reduced in case of the scaling factor of MMA cost function was greater than the scaling factor of SE-MMA. and the convergence speed was improved in case of the scaling factor of SE-MMA was greater than the MMA.

Nano-size Study of Surface-modified Ag Anode for OLEDs (표면처리에 의한 유기발광소자(OLED)용 Ag 전극의 Nano-size 효과 연구)

  • Kim, Joo-Young;Kim, Soo-In;Lee, Kyu-Young;Kim, Hyeong-Keun;Jun, Jae-Hyeok;Jeong, Yun-Jong;Kim, Mu-Chan;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Although silver is used for T-OLED (Top emitting organic Light-Emitting Diode) as reflective anode, it is not an ideal material due to its low work function. Thus, we study the effect of annealing and atmospheric pressure plasma treatment on Ag film that increases its work function by forming the thin silver oxide layer on its surface. In this study, we deposited silver on glass substrate using RF sputtering. Then we treated the Ag samples annealing at $300^{\circ}C$ for 30 minutes in atmosphere or treating the atmospheric plasma treatment for 30, 60, 90, 120s, respectively. We measured the change of the mechanical properties and the potential value of surface with each one at a different treatment type and time. We used nano-indenter system and KPFM (Kelvin Probe Force Microscopy). KPFM method can be measured the change of surface potential. The nanoindenter results showed that the plasma treatment samples for 30s, 120s had very low elastic modulus, hardness and Weibull modulus. However, annealed sample and plasma treated samples for 60s and 90s had better mechanical properties. Therefore, plasma treatment increases the uniformity thin film and the surface potential that is very effective for the performace of T-OLED.