• Title/Summary/Keyword: Modulation strategy

Search Result 313, Processing Time 0.022 seconds

A Neutral-Point Voltage Balance Controller for the Equivalent SVPWM Strategy of NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2109-2118
    • /
    • 2016
  • Based on the space vector pulse width modulation (SVPWM) theory, this paper realizes an easier SVPWM strategy, which is equivalently implemented by CBSPWM with zero-sequence voltage injection. The traditional SVPWM strategy has no effect on controlling the neutral-point voltage balance. In order to solve the neutral-point voltage unbalance problem for neutral-point-clamped (NPC) three-level inverters, this paper proposes a neutral-point voltage balance controller. The proposed controller realizes controlling the neutral-point voltage balance by dynamically calculating the offset superimposed to the three-phase modulation waves of an equivalent SVPWM strategy. Compared with the traditional SVPWM strategy, the proposed neutral-point voltage balance controller has a strong ability to balance the neutral-point voltage, has good steady-state performance, improves the output waveforms quality and is easy for digital implementation. An experiment has been carried out on a NPC three-level inverter prototype based on a digital signal processor-complex programmable logic device (DSP-CPLD). The obtained experimental results verify the effectiveness of the proposed neutral-point voltage balance controller.

Maximum Boost Space Vector Pulse-Width Modulation Strategy of Z-Source Inverters

  • Kim, Seong Hwan;Park, Jang Hyun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2015
  • In this paper, maximum boost space vector pulse-width modulation(MBSVPWM) strategy of Z-Source Inverters(ZSIs) is proposed. Conventional space vector pulse-width modulation(SVPWM) method of Voltage Source Inverters(VSIs) is modified to produce unique PWM patterns that realize the maximum boost control of ZSIs. This proposed method minimizes the switching power losses of ZSIs by reducing the numbers of the shoot-through states. Moreover, some switches keep ON state and the switching transitions do not occur during the specific sectors. An experimental system has been built and tested to verify the effectiveness of the proposed strategy.

A Digitally Controlled Three-Phase Cycloconverter Type High Frequency AC Link Inverter Using Space Vector Modulation

  • Sha, Deshang;Qin, Zian;Wu, Dan;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.28-36
    • /
    • 2011
  • In this paper, a three phase cycloconverter type high frequency AC link inverter is discussed. The configuration consists of a high frequency full-bridge inverter and a high frequency transformer followed by a three phase cycloconverter whose switch is composed of anti-series connected MOSFETs with a common source. A simple digital control strategy based on space vector modulation (SVM) and repetitive control for the cycloconverter is proposed although its input voltage is a high frequency AC pulse. The operation principle of the proposed control strategy is analyzed and the equivalent working modes during one interval are also presented. The effectiveness of the proposed control strategy is verified through Matlab/Simulink simulations and experiments on a 1.45kW prototype.

Improved Space Vector Modulation Strategy for AC-DC Matrix Converters

  • Liu, Xiao;Zhang, Qingfan;Hou, Dianli;Wang, Siyao
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.647-655
    • /
    • 2013
  • In this paper, an approach to reduce the common-mode voltage and to eliminate narrow pulse for implemented AC-DC matrix converters is presented. An improved space vector modulation (SVM) strategy is developed by replacing the zero space vectors with suitable pairs of active ones. Further, while considering the commutation time, the probability of narrow pulse in the conventional and proposed SVM methods are derived and compared. The advantages of the proposed scheme include: a 50% reduction in the peak value of the common-mode voltage; improved input and output performances; a reduction in the switching loss by a reduced number of switching commutations and a simplified implementation via software. Experimental results are presented to demonstrate the correctness of the theoretical analysis, as well as the feasibility of the proposed strategy.

Antenna Selection Schemes in Quadrature Spatial Modulation Systems

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.606-611
    • /
    • 2016
  • This paper presents antenna selection schemes for recently proposed quadrature spatial modulation (QSM) systems. The antenna selection strategy is based on Euclidean distance optimized antenna selection (EDAS). The symbol error rate (SER) performance of these schemes is compared with that of the corresponding algorithm associated with spatial modulation (SM) systems. It is shown through simulations that QSM systems using EDAS offer significant improvement in terms of SER performance over SM systems with EDAS. Their SER performance gains are seen to be about 2 dB-4 dB in $E_s/N_0$ values.

Single Pulse-Width-Modulation Strategy for Dual-Active Bridge Converters

  • Byen, Byeng-Joo;Jeong, Byong-Hwan;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • This paper describes a single pulse-width modulation control strategy using the Single Pulse-Width Modulation (SPWM) method with a soft-switching technique for a wide range of output voltages from a bidirectional Dual-Active Bridge (DAB) converter. This method selects two typical inductor current waveforms for soft-switching, and proposes a rule that makes it possible to achieve soft-switching without any compensation algorithm from the waveforms. In addition, both the step-up and step-down conditions are analyzed. This paper verifies that the leakage inductance is independent from the rule, which makes it easier to apply in DAB converters. An integrated algorithm, which includes step-up and step-down techniques, is proposed. The results of experiments conducted on a 50-kW prototype are presented. The system efficiency is experimentally verified to be from 85.6% to 97.5% over the entire range.

A Novel Virtual Space Vector Modulation Strategy for the Neutral-Point Potential Comprehensive Balance of Neutral-Point-Clamped Converters

  • Zhang, Chuan-Jin;Tang, Yi;Han, Dong;Zhang, Hui;Zhang, Xiao;Wang, Ke
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.946-959
    • /
    • 2016
  • A novel Virtual Space Vector (VSV) modulation strategy for complete control of potential neutral point (NP) issues is proposed in this paper. The neutral point potential balancing problems of multi-level converters, which include elimination of low frequency oscillations and self-balancing for NP dc unbalance, are investigated first. Then a set of improved virtual space vectors with dynamic adjustment factors are introduced and a multi-objective optimization algorithm which aims to optimize these adjustment factors is presented in this paper. The improved virtual space vectors and the multi-objective optimization algorithm constitute the novel Virtual Space Vector modulation. The proposed novel Virtual Space Vector modulation can simultaneously recover NP dc unbalance and eliminate low frequency oscillations of the neutral point. Experiment results show that the proposed strategy has excellent performance, and that both of the neutral point potential issues can be solved.

Hybrid Cascaded MLI topology using Ternary Voltage Progression Technique with Multicarrier Strategy

  • Venugopal, Jamuna;Subarnan, Gayathri Monicka
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1610-1620
    • /
    • 2015
  • A major problem in conventional multilevel inverter is that an increase in power semiconductor switches causes an increase in cost and switching losses of the inverter. The multicarrier strategy adopted for the multilevel inverters has become more popular due to reduced cost, lower harmonic distortion, and higher voltage capability than the conventional switching strategy applied to inverters. Various topologies and modulation strategies have been reported for utility and drive applications. Level shifted based pulse width modulation techniques are proposed to investigate the performance of the multilevel inverter. The proposed work focuses on reducing the utilized switches so that the cost and the switching losses of the inverter do not go up and the consistent efficiency could be achieved. This paper presents the detailed analysis of these topologies. The analysis is based on the number of switches, DC sources, output level, maximum voltage, and the efficiency. As an illustration, single phase cascaded multilevel inverter topologies are simulated using MATLAB/SIMULINK and the experimental results demonstrate the viability of these inverters.

Territory Defense Strategy of the Wrinkled Frog, Rana rugosa

  • Park, Shi-Ryong;Cheong, Seokwan
    • The Korean Journal of Ecology
    • /
    • v.25 no.1
    • /
    • pp.25-28
    • /
    • 2002
  • The advertisement call of anurans functions to attract potential mates. The dominant frequency of an advertisement call is generally getting lower with increased snout-vent length (SVL) of the caller Rana rugosa has an advertisement call tilth a particularly high frequency modulation. We conducted a playback experiment to verify the function of frequency modulation, and investigated the territorial behavior of the frog. The frog has five types of territory defense strategy. Strategy choice depended on the caller's SVL. Small males became satellites or lowered the dominant frequency of their advertisement call, whereas large males actively defended their territory with encounter calls. In response to high frequency (1107 Hz) playback, the frogs lowered their advertisement call frequency, and towered them further in response to the low frequency (1028 Hz) playback. In addition, the number of pulses in a call was increased in response to the playback. These results indicate that the frog avoids physical conflict with competitors by selecting a territory defense strategy suitable for the caller's size, and by lowering its call frequency to disguise its SVL.

A Dynamic Power Distribution Strategy for Large-scale Cascaded Photovoltaic Systems

  • Wang, Kangan;Wu, Xiaojie;Deng, Fujin;Liu, Feng
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1317-1326
    • /
    • 2017
  • The cascaded H-bridge (CHB) multilevel converter is a promising topology for large-scale photovoltaic (PV) systems. The output voltage over-modulation derived by the inter-module active power imbalance is one of the key issues for CHB PV systems. This paper proposed a dynamic power distribution strategy to eliminate the over-modulation in a CHB PV system by suitably redistributing the reactive power among the inverter modules of the CHB PV system. The proposed strategy can effectively extend the operating region of the CHB PV system with a simple control algorithm and easy implementation. Simulation and experimental results carried out on a seven-level CHB grid-connected PV system are shown to validate the proposed strategy.