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This paper presents antenna selection schemes for 
recently proposed quadrature spatial modulation (QSM) 
systems. The antenna selection strategy is based on 
Euclidean distance optimized antenna selection (EDAS). 
The symbol error rate (SER) performance of these 
schemes is compared with that of the corresponding 
algorithm associated with spatial modulation (SM) 
systems. It is shown through simulations that QSM 
systems using EDAS offer significant improvement in 
terms of SER performance over SM systems with EDAS. 
Their SER performance gains are seen to be about 2 dB– 
4 dB in Es/N0 values. 
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I. Introduction 

A spatial modulation (SM) transmission technique is a 
recently proposed single-RF multiple input multiple output 
method [1]–[3]. Because only one transmit antenna from NT 
transmit antennas is activated for the transmission of a symbol 
during a single symbol time, no synchronization between 
transmit antennas is necessary, and inter-channel interference at 
the receiver can be avoided. Transmit antennas are considered 
to have a spatial constellation dimension to convey additional 
information bits. The overall spectral efficiency is therefore 
proportional to log2 NT. In [4], a new approach to improving the 
overall spectral efficiency of SM technology, called quadrature 
spatial modulation (QSM), was presented. In QSM, the spatial 
constellation symbols with in-phase and quadrature 
components are transmitted through two spatial dimensions. 
Thus, two spatial dimensions can carry 2log2 NT information 
bits. 

Transmit antenna selection techniques have recently been 
developed to enhance the reliability of SM systems [5]–[9]. In 
[5] and [6], Euclidean distance optimized antenna selection 
schemes with low-complexity (SM-EDAS-LC) were 
presented. These schemes can achieve the same symbol error 
rate (SER) performance as EDAS with exhaustive search (SM-
EDAS-ES) with low computational complexity. In [7], 
maximizing the instantaneous minimum squared Euclidean 
distance has been used based on singular value decomposition 
as a suboptimal antenna selection approach. This method has 
led to some performance degradation in comparison to an 
optimal SM-EDAS-ES algorithm. In [10], the achievable 
transmit diversity order of SM systems with EDAS-based 
antenna selection has been quantified. Although such 
researches on antenna selection for SM systems have been 
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conducted recently, to the best of our knowledge, there have 
been no investigations on antenna selection for QSM systems. 
The previous antenna selection algorithms for SM systems 
were unable to be directly applied to QSM systems because 
QSM systems exploit two spatial dimensions consisting of  
in-phase and quadrature parts for transmitting a signal 
constellation symbol. Thus, antenna selection schemes 
appropriate for QSM systems should be considered. The main 
contribution of this work is to present the first antenna selection 
schemes for QSM systems, which deals with transmit antenna 
selection methods for QSM systems not yet available in the 
literature to achieve transmit diversity gains. EDAS, which was 
proposed for SM systems, was extended to QSM systems. 
Furthermore, low-complexity QSM algorithms that trade 
performance for complexity are proposed. The SER 
performance of the proposed algorithms and their low-
complexity counterparts are compared along with their 
computational complexities. Finally, we compare their 
performance and complexity with those of EDAS-ES in SM 
systems. 

II. System Model 

A QSM system with NT transmit antennas and NR receive 

antennas is considered. An NR × 1 received signal vector can 

then be expressed as 

R Q T, , 1, 2, ... , ,
R Ql l R Qs j s l l N   y h h w       (1) 

where sR and sQ are the real and imaginary parts of a QAM 

symbol, respectively, and 
R

T
1 2[ , ... , ]Nw w ww  is an NR × 1  

complex additive white Gaussian noise vector with 

independent and identically distributed (i.i.d.) entries wp ~ CN 

(0, N0), p = 1, 2, … , NR, where N0 is the noise variance.     

In addition, 
Rl

h and 
Ql

h denote the lR th and lQ th column 

vectors of an NR × NT channel gain matrix H given by 

T1 2[ , , ... , ]NH h h h , respectively. The elements of H are 

i.i.d. random variables with a circularly symmetric complex-

valued Gaussian distribution CN(0, 1). 

III. Euclidean Distance-Based Antenna Selection for 
QSM Systems 

1. EDAS for QSM Systems 

To select NS (<NT) antennas out of NT transmit antennas, 

EDAS with an exhaustive search finds the specific antenna 

subset that maximizes the minimum Euclidean distance among 

all possible transmit symbol vectors, and can be defined as 
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where Γ represents the set of enumerations of all possible 
T

Ssearch
N
NN C  combinations, in which T

S

N
NC  denotes the 

number of NS combinations from NT elements. In addition, HI 

is the NR × NS channel gain matrix based on the Ith 

enumeration of the set Γ, and X is the set of all possible QSM 

transmit symbol vectors denoted by eks, in which ek, for 

S1,2, , ,k N   is an NS × 1 vector with 1 as a single non-zero 

element at the kth location, and s is a transmit symbol from 

symbol set S. 
The EDAS of (2) can be written as 

 ED arg max min ( )
I

I I


 D ,           (3) 

where D(I) is an NS × NS matrix computed by an NR × NS 
matrix 

S(1) (2) ( )[ , , ... , ]I NH h h h  obtained by eliminating 

the columns that are not present in I. Here, h(t), for 

S1, 2, ... , ,t N  is the tth column vector of HI associated with 

the Ith enumeration of the set Γ. For m = n, the (m, n) th 
element of D(I) can be obtained as 
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where S1, 2, ... , ,Rm m N   and siR and siQ denote real and 

imaginary parts of a symbol, is , respectively, in which i = 1, 2, 

from the symbol set S. For m < n, Dm, n(I) can be written as 

1R , 2R

1Q, 2Q

S

S

,

2

( ) 1R ( ) 1Q ( ) 2R ( ) 2Q     Re( )
     Im( )
   ( ) ( )
     1,2,...,

, 1,...,

( )

min ,
R Q R Q

R R

Q

Q Q Q

m n

m m n ns s S F
s s S

m m n n
m N

n m m N

D I

s j s s j s



  


 



  h h h h
 

(5) 

where S1, 2, ... , ,Rm m N  S1, 2, ... , ,Qm N Rn n   

S1, 2, ... , ,m m N   and S, 1, ... , .Q Q Qn m m N   

Note that D(I) in QSM is computed in each enumeration of 

all possible combinations. For a comparison of the 

computational complexity, this work follows a complexity 

analysis similar to that performed in floating point operations 

[7]. Denoting the signal constellation size as M, an exhaustive 

search approach for EDAS in QSM systems (QSM-EDAS-

ES) requires the following approximate computational 

complexity in all of the flops. 
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ST

S

2 2
QSM-EDAS-ES 2 S R( ) (12 2) .NN

NC C C N N M       (6) 

Here, instead of complex multiplications, real multiplications 

are reflected in the complexity. 

2. EDAS with Reduced Complexity 

EDAS-ES for QSM systems can be modified to reduce the 
computational complexity, which is called QSM-EDAS-LC in 
this work. The computation of Dm, n(I) in (4) and (5) can be re-
written as 
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where s = [s1R s1Q  –s2R  –s2Q]T and ( , ) ( , ) ( , )
H

m n m n m nΞ Ξ Ξ   is a 

4 × 4 matrix whose (u, v)th element is denoted by ( , ) ,m n
uvh   u, 

v = 1, 2, 3, 4 with ( , ) ( , ) ,m n m n
uv vuh h  u ≠ v. That is, 
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Here, the modified channel matrix ( , )m nΞ  is defined as 

( ) ( ) ( ) ( )
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Thus, (7) and (8) can be computed as 
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Upon conditioning s2R and s2Q, (11) can be expressed as 
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Thus, the estimates of s1Q and s1R are obtained by 
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where FQ(g2) and FR(g1) denote the function demodulating g2 
and g1 to the nearest point of Im(S) and Re(S), respectively. 
Symbol s1 is then obtained by s1 = FR(g1) + jFQ(g2). One of the 
differences between the proposed algorithm and the method in 
[6] is that QSM-EDAS-LC does not require QR 
decomposition of the modified channel matrix and requires 
two spatial dimensional searches. Another difference is that the 
estimate of s1R in QSM-EDAS-LC should be calculated after 
the estimate of s1Q is obtained. 

Then, using 1Rŝ  and 1Qˆ ,s  the computation of Dm, n(I) in 
(7) and (8) can be equivalently defined respectively as 
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Thus, the complexity of QSM-EDAS-LC is approximated by 



ETRI Journal, Volume 38, Number 4, August 2016 Sangchoon Kim   609 
http://dx.doi.org/10.4218/etrij.16.0115.0986 

   ST

S

2

QSM-EDAS-LC 2 S R12 2NN
NC C C N N M   .   (21) 

To further reduce the computational complexity of (17) and 
(18), we can exploit the rotational symmetry of angle 0 π   
[8]. By using a polar coordinate representation, a given symbol 
s2 can be given by 2 .js re   Now, consider the symbol s2 
rotated by angle 0 π,   which is given by π

2 2
js e s  . 

From (14) and (13), we then have 
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Thus, this result can be re-expressed as 1 2g jg    

  π
1 2

jg j g e . Therefore, assuming that s1 is the constellation 

point to achieve the minimum Dm, n(I) for a given s2, the 

constellation point that makes Dm, n(I) minimum is equal to 

    π
R 1 Q 2 1

jF g jF g s e    for a given π
2 .js e  Hence, the 

complexity of QSM-EDAS-LC can be further reduced as 

    ST
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2
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NC C C N N M   .  (24) 

3. EDAS with Further Complexity Reduction 

In Sections I and II, D(I) was computed in each enumeration 

using the column vectors of the channel matrix associated with 

the Ith enumeration, and thus its computation with an 

exhaustive search results in a huge complexity. To significantly 

reduce this high complexity, we compute an upper triangular  

NT × NT matrix Σ  only once before searching for IED, as in 

SM [5], [6]. The ( , )m n  th element of the matrix Σ  can be 

calculated as follows. 
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where T1, 2, ... , ,Rm m N    T1, 2, ... , ,Qm N   Rn n   

T1, 2, ... , ,m m N     and T, 1, ... , .Q Q Qn m m N     Here, 
,t h T1,2, ... , ,t N   is the tth column vector of an NR × NT 

matrix H. 
After computing the NT × NT upper triangular matrix Σ , its 

NS × NS sub-matrix ( )IΣ  can be obtained by eliminating the 
rows and columns that are not present in I. The decision metric 
whose approach is based on the full dimension of Σ , which is 
called QSM-EDAS-F, can then be given as 

ED arg max{min ( )}
I

I I


 Σ .         (27) 

Furthermore, we can reduce the complexity by applying the 
methods used in Section II to this approach by assuming that  
s2R and s2Q are the optimal solution of ,m n  . This reduced 
algorithm is called QSM-EDAS-R, and (25) and (26) can be 
rewritten as 
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2 2
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Further, if the approaches presented in Section II are applied to 
QSM-EDAS-F, its complexity can be further reduced, and we 
thus have the complexity of QSM-EDAS-R. 

IV. Simulation Results 

The receiver for QSM systems employs a maximum-
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likelihood (ML) detector, which jointly estimates the indices of 
the activated antennas and the symbol transmitted from them. 
For comparison purposes, we consider the SM system based 
on EDAS-ES in [5] and [6]. Now, the SER performance of the 
QSM systems based on EDAS is evaluated and compared with 
that of a conventional SM-EDAS-ES. The spectral efficiency 
considered in the simulations is a rate of 6 bits per channel used. 
Figure 1 shows the simulation results of the SER performance 
versus Es/N0 in decibels for QSM-EDAS-ES, QSM-EDAS-LC, 
QSM-EDAS-F, QSM-EDAS-R, and SM-EDAS-ES. Here, Es 
represents the QAM signal symbol energy. We employ NT = 6, 
NT = 4, and NR = 2 with 4-QAM for QSM. Meanwhile, 16-
QAM is assumed for SM systems with NT = 6, NS = 4, and NR 
= 2. It was found that the QSM system using EDAS-ES offers 
a significantly better SER performance than with no antenna 
selection. Here, we observed a gain in Es/N0 of about 3 dB to  
8 dB. In addition, it outperforms the SM system with EDAS-
ES by about 2 dB to 3 dB in Es/N0 values. Note that the QSM 
system uses two transmit RF chains, unlike the SM system, 
which employs only one. QSM-EDAS-LC achieves the same 
SER performance as QSM-EDAS-ES. It was also shown that 
QSM-EDAS-F and QSM-EDAS-R experience a performance 
loss compared with QSM-EDAS-ES. This is due to the single 
computation of an upper triangular NT × NT matrix Σ  prior to 
the searching mode, which results in the inclusion of extra 
unnecessary channel components. However, they provide a 
slightly better performance than SM-EDAS-ES for the given 
Es/N0 ranges. In Fig. 2, four receive antennas are assumed with 
the same parameters shown in Fig. 1. It was shown that the 
QSM system employing EDAS-ES outperforms the SM 
system with EDAS-ES. Here, a gain of about 3 dB to 4 dB is 
seen. The performance degradation of QSM-EDAS-F and 
QSM-EDAS-R is relatively small compared to that of QSM-
EDAS-ES. Thus, they still provide about a 1.5 dB to 3 dB 
better performance than no selection in QSM, and about a 2.3-
dB better performance than SM-EDAS-ES. Therefore, QSM-
EDAS-R is more beneficial in terms of transmit diversity gains 
when there are four receive antennas than when there are two 
receive antennas. 

Next, we compare the complexity of the EDAS algorithms 
used in the QSM and SM systems. The complexity of SM-
EDMS-ES [5], [6] can be given as 

 T 2
SM-EDAS-ES 2 R10 1NC C N M  .       (32) 

Note that the complexity includes the number of real 
multiplications. The complexities of QSM-EDAS-ES, QSM-
EDAS-LC, QSM-EDAS-R, and SM-EDAS-ES are given in 
Tables 1 and 2. Table 1 shows the number of flops for NT = 6, 
NS = 4, and NR = 2 with 4-QAM and 16-QAM. Other than  
NR = 4, the parameters in Table 2 are the same as those in  

 

Fig. 1. SER performance comparison of SM-EDAS-ES, QSM-
EDAS-ES, QSM-EDAS-LC, QSM-EDAS-F, and QSM-
EDAS-R algorithms for NT = 6, NS = 4, and NR = 2. 
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Fig. 2. SER performance comparison of SM-EDAS-ES, QSM-
EDAS-ES, QSM-EDAS-LC, QSM-EDAS-F, and QSM-
EDAS-R algorithms for NT = 6, NS = 4, and NR = 4. 
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Table 1. It can be seen that the EDAS algorithm for QSM 
systems requires an extremely high complexity compared to 
the EDAS for SM systems because of two spatial dimensional 
searches. Recall that D(I) in QSM-EDAS-ES and QSM-
EDAS-LC was computed in each enumeration of all possible 
combinations. On the other hand, QSM-EDAS-R and SM 
calculate an upper triangular NT × NT matrix Σ  a single time. 
An NS × NS sub-matrix ( )IΣ  of the matrix Σ  is then 
obtained by removing the rows and columns that are not 
present in I, which is why the complexity of QSM-EDAS-ES 
is much larger than that of SM-EDAS-ES. However, for a fair 
comparison, we have to assume the same data rate per channel 
used. Here, 6 bits per channel used are employed. The 
complexities in the highlighted cells of the tables should be  
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Table 1. Computational complexity for NT = 6, NS = 4, NR = 2. 

 
SM- 

EDAS-ES 

QSM- 

EDAS-ES 

QSM- 

EDAS-LC 

QSM- 

EDAS-R 

4-QAM 4,560 624,000 78,000 45,306 

16-QAM 72,960 9,984,000 312,000 180,252 

 

Table 2. Computational complexity for NT = 6, NS = 4, NR = 4. 

 
SM- 

EDAS-ES 

QSM- 

EDAS-ES 

QSM- 

EDAS-LC 

QSM- 

EDAS-R 

4-QAM 9,360 1,200,000 150,000 45,738 

16-QAM 149,760 19,200,000 600,000 180,684 

 

 

compared. In other words, SM systems with 16-QAM should 

be compared with QSM systems with 4-QAM. As can be seen, 

the antenna selection schemes for QSM systems offer a lower 
complexity than SM-EDAS-ES. In Tables 1 and 2, QSM-

EDAS-R achieves approximately a 1.6 and three-times smaller 

complexity than SM-EDAS-ES, respectively. In addition, it 
was found that the increase in the complexity of QSM-EDAS-

R occurring from NR = 2 to NR = 4 is minor, but the other 

values incur about a two-fold larger complexity. Thus, QSM-
EDAS-R is advantageous for a larger number of receive 

antennas. To achieve transmit diversity gains through antenna 

selection in a QSM system, more efficient antenna selection 
techniques need to be developed for practical use. To the best 

of our knowledge, this algorithm for QSM systems is not yet 

available in the literature. 

V. Conclusion 

Antenna selection schemes based on EDAS for QSM 
systems were introduced in this paper. We studied and 
compared their SER performance when EDAS-based antenna 
selection techniques are applied in QSM and SM systems. We 
found that the QSM systems employing EDAS-based antenna 
selection have a much better SER performance compared with 
SM systems utilizing EDAS-ES. The complexity of the 
EDAS-ES algorithm for QSM systems can be reduced through 
modifications. Thus, QSM-EDAS-R has a lower complexity 
compared to the EDAS-ES approach for SM systems with the 
same data rate per channel used. 

References 

[1] R.Y. Mesleh et al., “Spatial Modulation,” IEEE Trans. Veh. 

Technol., vol. 57, no. 4, July 2008, pp. 2228–2241. 

[2] M. Di Renzo, H. Haas, and P.M. Grant, “Spatial Modulation for 

Multiple-Antenna Wireless Systems: A Survey,” IEEE Commun. 

Mag., vol. 49, no. 12, Dec. 2011, pp. 182–191. 

[3] J. Jeganatha, A. Ghrayeb, and L. Szczecinski, “Spatial 

Modulation: Optimal Detection and Performance Analysis,” 

IEEE Commun. Lett., vol. 12, no. 8, Aug. 2008, pp. 545–547. 

[4] R. Mesleh, S.S. Ikki, and H.M. Aggoune, “Quadrature Spatial 

Modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 6, July 2015, 

pp. 2738–2742. 

[5] R. Rajashekar, K.V.S. Hari, and L. Hanzo, “Antenna Selection in 

Spatial Modulation Systems,” IEEE Commun. Lett., vol. 17, no. 3, 

Mar. 2013, pp. 521–524. 

[6] N. Pillay and H. Xu, “Comments on Antenna Selection in Spatial 

Modulation Systems,” IEEE Commun. Lett., vol. 17, no. 9, Sept. 

2013, pp. 1681–1683. 

[7] K. Ntontin et al., “A Low-Complexity Method for Antenna 

Selection in Spatial Modulation Systems,” IEEE Commun. Lett., 

vol. 17, no. 12, Dec. 2013, pp. 2312–2315. 

[8] N. Wang et al., “Further Complexity Reduction Using Rotational 

Symmetry for EDAS in Spatial Modulation,” IEEE Commun. 

Lett., vol. 18, no. 10, Oct. 2014, pp. 1835–1838. 

[9] N. Pillay and H. Xu, “Low-Complexity Transmit Antenna 

Selection Schemes for Spatial Modulation,” IET Commun., vol. 9, 

no. 2, Jan. 2015, pp. 239–248. 

[10] R. Rajashekar, K.V.S. Hari, and L. Hanzo, “Quantifying the 

Transmit Diversity Order of Euclidean Distance Based Antenna 

Selection in Spatial Modulation,” IEEE Signal Process. Lett., vol. 

22, no. 9, Sept. 2015, pp. 1434–1437.  

 

Sangchoon Kim received his BS degree from 

Yonsei University, Seoul, Rep. of Korea, in 

1991, and his ME and PhD from the University 

of Florida, Gainesville, degree USA, in 1995 

and 1999, respectively, all in electrical and 

computer engineering. From 2000 to 2005, he 

was a senior research engineer at LG Corporate 

Institute of Technology, Seoul, Rep. of Korea, and a chief research 

engineer with LG Electronics, Anyang, Rep. of Korea, working on a 

range of research projects in the field of wireless/mobile 

communications. In 2005, he joined Dong-A University, Busan, Rep. 

of Korea, where he is currently a full professor in the Department of 

Electronics Engineering. His research interests cover a range of areas in 

wireless/mobile communications, signal processing, and antenna 

design. 

  


