• Title/Summary/Keyword: Modulation energy

Search Result 468, Processing Time 0.031 seconds

Modulation of the Somatotropic Axis in Periparturient Dairy Cows

  • Kim, Jin Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.147-154
    • /
    • 2014
  • This review focuses on modulation of growth hormone (GH) and its downstream actions on periparturient dairy cows undergoing physiological and metabolic adaptations. During the periparturient period, cows experience a negative energy balance implicating that the feed intake does not meet the total energy demand for the onset of lactation. To regulate this metabolic condition, key hormones of somatotropic axis such as GH, IGF-I and insulin must coordinate adaptations required for the preservation of metabolic homeostasis. The hepatic GHR1A transcript and GHR protein are reduced at parturition, but recovers on postpartum. However, plasma IGF-I concentration remains low even though hepatic abundance of the GHR and IGF-I mRNA return to pre-calving value. This might be caused by alternation in IGFBPs and ALS genes, which consequently affect the plasma IGF-I stability. Plasma insulin level declines in a parallel manner with the decrease in plasma IGF-I after parturition. Increased GH stimulates the lipolytic effects and hepatic glucose synthesis to meet the energy requirement for mammary lactose synthesis, suggesting that GH antagonizes insulin-dependent glucose uptake and attenuates insulin action to decrease gluconeogenesis.

Energy Model Based Direct Torque Control of Induction Motor Using IP Controllers

  • Mannan, Mohammad Abdul;Murata, Toshiaki;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.405-411
    • /
    • 2012
  • This paper deals with direct torque control of an induction motor (IM) with constant switching frequency. The desired torque is obtained from the speed controller which is designed using the IP controller. Decoupling control of torque and flux is developed based on the energy model of IM using the IP controller strategies. The desired d-axis and q-axis stator voltage components are obtained from the designed controller, which decouples torque and flux. The constant switching frequency can be applied using space-vector pulse width modulation, since the desired stator voltage can be known from the decoupling torque and flux controllers. In order to achieve stable operation of the proposed IP controllers, the gains of the controllers are chosen by setting the poles in negative (left) half of s-plane and by choosing the rising time for the response of the step function. The proposed controller was verified in simulations using Matlab/Simulink and results have proven excellent performance. It was found that the proposed IP controllers can provide excellent performance to track the desired torque and speed and to reject the disturbance of load.

Effect of Growth Temperature on the Luminescence Properties of InP/GaP Short-Period Superlattice Structures

  • Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong;Lee, Chang Lyul
    • Applied Science and Convergence Technology
    • /
    • v.24 no.1
    • /
    • pp.22-26
    • /
    • 2015
  • The optical properties of InP/GaP short-period superlattice (SPS) structures grown at various temperatures from $400^{\circ}C$ to $490^{\circ}C$ have been investigated by using temperature-dependent photoluminescence (PL) and emission wavelength-dependent time-resolved PL measurements. The PL peak energy for SPS samples decreases as the growth temperature increases. The decreased PL energy of ~10 meV for the sample grown at $425^{\circ}C$ compared to that for $400^{\circ}C$-grown sample is due to the CuPt-B type ordering, while the SPS samples grown at $460^{\circ}C$ and $490^{\circ}C$ exhibit the significant reduction of the PL peak energies due to the combined effects of the formation of lateral composition modulation (LCM) and CuPt-B type ordering. The SPS samples with LCM structure show the enhanced carrier lifetime due to the spatial separation of carriers. This study represents that the bandgap energy of InP/GaP SPS structures can be controlled by varying growth temperature, leading to LCM formation and CuPt-B type ordering.

CS-PDM Series Resonant High Frequency Inverter for Copy Machine

  • Sugimura, Hisayuki;Eid, Ahmad Mohamad;Hiraki, Eiji;Kim, Sung-Jung;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1066-1071
    • /
    • 2005
  • This paper presents the two lossless auxiliary inductors-assisted voltage source type half bridge (single ended push pull: SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimental ones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proved from the practical point of view.

  • PDF

A Novel Power Frequency Changer Based on Utility AC Connected Half-Bridge One Stage High Frequency AC Conversion Principle

  • Saha Bishwajit;Koh Kang-Hoon;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.203-205
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

Series Load Resonant High Frequency Inverter with ZCS-PDM Control Scheme for Induction-Heated Fusing Roller

  • Sugimura, Hisayuki;Kwen, Soon-Kurl;Koh, Kang-Hoon;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.415-420
    • /
    • 2005
  • This paper presents the two lossless auxiliary inductors-assisted voltage source type half bridge (single ended push pull: SEPP) series resonant high frequency inverter for induction heated king roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimental ones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proved from the practical point of view.

  • PDF

A Novel Utility AC Frequency to High Frequency AC Power Converter with Boosted Half-Bridge Single Stage Circuit Arrangement

  • Saha, Bishwajit;Kwon, Soon-Kurl;Koh, Hee-Seog;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.387-390
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit Incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

Simulation of Manipulating Various Pulsed Laser Operations Through Tuning the Modulation Depth of a Saturable Absorber (포화 흡수체의 투과변조깊이 조절을 통한 다양한 펄스상태 조작 방법에 관한 전산 모사)

  • Gene, Jinhwa;Yeom, Dong-Il;Kim, Byoung Yoon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.351-355
    • /
    • 2017
  • In this paper, we conduct a simulation of manipulating various pulsed laser operations through tuning the modulation depth of the saturable absorber in a laser cavity. The research, showing that various pulsed operations could be manipulated from Q-switching through Q-switched mode locking to mode locking by tuning the modulation depth of the saturable absorber in a cavity, has been studied by experimental means. We conduct a simulation with the Haus master equation to verify that these experimental results are consistent with expectations from theory. The time dependence of the gain was considered to express Q-switching fluctuation through applying a rate equation with the Haus master equation. Laser operation was manipulated from mode locking through Q-switched mode locking to Q-switching as modulation depth was increased, and this result agreed well with the theoretical expectation.

Design and Evaluation of Higher Level Modulation in Beam Space MIMO Communication System (빔 공간 MIMO 통신시스템에서 고레벨 변조 설계와 평가)

  • Kim, Bong-Jun;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.220-228
    • /
    • 2014
  • ESPAR(Electronically Steerable Parasitic Array Radiator) antenna is the technique for overcoming the problems of space limitation and energy efficiency due to the multiple RF-chain. Conventional MIMO system with multiple antenna requires a large number of RF-chain for transmitting the multiple data because it transmits the data in proportion to the number of antenna. Beamspace MIMO system using the ESPAR antenna which has single RF-chain was proposed for solving the problems caused by using the multiple antenna and RF-chain. In this paper, therefore we propose 2x2 beamspace MIMO system using the 16, 64-QAM modulation and evaluate the performance of this system to reveal that it is possible that beamspace MIMO system can use not only PSK modulation but also QAM modulation. We confirm that QAM symbol can be generated by adjusting reactance of parasitic elements and making reactance set and also we confirm that performance of beamspace MIMO system is similar to the conventional MIMO system by transmitting the QAM symbol made by reactance set through the simulation.

Energy Efficient Control Scheme in Wireless Sensor Networks

  • Pongot, Kamil;Jeong, Woo-Jin;Lee, Jae-Yoon;Yoon, Dong-Weon;Park, Sang-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.371-372
    • /
    • 2008
  • In this paper, we consider wireless sensor networks with hard energy constraint, where each node is powered by a small battery. Under this hard constraint, reducing energy consumption is the most important design consideration for wireless sensor networks. Energy saving and control is an important issue, involved in the design of most sensor nodes. In this context, we focus on physical layer design where energy constraint problem can be modeled as an optimization of transmission modulation scheme[1]. Specifically, our analyses are based on energy control schemes that are relative to physical layer design on upper bound SEP MPSK in AWGN channels.

  • PDF