• Title/Summary/Keyword: Modulation Loss

Search Result 340, Processing Time 0.025 seconds

A Novel Self-Learning Filters for Automatic Modulation Classification Based on Deep Residual Shrinking Networks

  • Ming Li;Xiaolin Zhang;Rongchen Sun;Zengmao Chen;Chenghao Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1743-1758
    • /
    • 2023
  • Automatic modulation classification is a critical algorithm for non-cooperative communication systems. This paper addresses the challenging problem of closed-set and open-set signal modulation classification in complex channels. We propose a novel approach that incorporates a self-learning filter and center-loss in Deep Residual Shrinking Networks (DRSN) for closed-set modulation classification, and the Opendistance method for open-set modulation classification. Our approach achieves better performance than existing methods in both closed-set and open-set recognition. In closed-set recognition, the self-learning filter and center-loss combination improves recognition performance, with a maximum accuracy of over 92.18%. In open-set recognition, the use of a self-learning filter and center-loss provide an effective feature vector for open-set recognition, and the Opendistance method outperforms SoftMax and OpenMax in F1 scores and mean average accuracy under high openness. Overall, our proposed approach demonstrates promising results for automatic modulation classification, providing better performance in non-cooperative communication systems.

Analysis and Implementation of Multiphase Multilevel Hybrid Single Carrier Sinusoidal Modulation

  • Govindaraju, C.;Baskaran, K.
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.365-373
    • /
    • 2010
  • This paper proposes a hybrid single carrier sinusoidal modulation suitable for multiphase multilevel inverters. Multiphase multilevel inverters are controlled by hybrid modulation to provide multiphase variable voltage and a variable frequency supply. The proposed modulation combines the benefits of fundamental frequency modulation and single carrier sinusoidal modulation (SC-SPWM) strategies. The main characteristics of hybrid modulation are a reduction in switching losses and improved harmonic performance. The proposed algorithm can be applied to cascaded multilevel inverter topologies. It has low computational complexity and it is suitable for hardware implementations. SC-SPWM and its base modulation design are implemented on a TMS320F2407 digital signal processor (DSP). A Complex Programmable Logic Device realizes the hybrid PWM algorithm and it is integrated with a DSP processor for hybrid SC-SPWM generation. The feasibility of this hybrid modulation is verified by spectral analysis, power loss analysis, simulation and experimental results.

Design and Simulation of High Efficiency PWM Modulation Method for Three-phase Matrix Converter (3상 매트릭스 컨버터의 고효율 변조방법 설계 및 시뮬레이션)

  • Lim, Hyun-Joo;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.337-344
    • /
    • 2012
  • A matrix converter is used for converting AC/AC power directly. In order to generate sinusoidal input/output waveform in matrix converter, it uses nine bidirectional switches and PWM modulation. This paper presents an analytical averaged loss model of matrix converter with DDPWM(direct duty ratio PWM) and proposes a new switching method for reducing switching losses. A Mathematical loss models with average magnitude of voltage/current are classed as conduction and switching loss. The proposed switching pattern is improved with existing DDPWM. To prove improved efficiency with proposed DDPWM, this paper compares losses between suggested switching pattern and conventional switching pattern using mathematical and simulation method. Each loss types are influenced by environmental factors such as temperature, switching frequency, output current and modulation method.

Analysis on Core Loss of Brushless DC Motor Considering Pulse Width Modulation of Inverter

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1914-1920
    • /
    • 2014
  • In this paper, characteristics of blushless direct current (BLDC) motor including core loss are analyzed considering pulse width modulation (PWM) of inverter. Input voltage of BLDC motor due to PWM is calculated considering duty ratio and carrier frequency of inverter in order to control torque or speed of BLDC motor. For the calculation of core loss, the input current with harmonics due to PWM voltage is calculated by using equivalent circuit model of BLDC motor according to switching pattern and carrier frequency. Next, core loss is analyzed by inputting the currents as a source of BLDC motor for FEM. Characteristics including core loss are compared with ones without PWM waveform according to reference speed.

Efficient Hybrid Carrier Based Space Vector Modulation for a Cascaded Multilevel Inverter

  • Govindaraju, C.;Baskaran, K.
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.277-284
    • /
    • 2010
  • This paper presents a novel hybrid carrier based space vector modulation for cascaded multilevel inverters. The proposed technique inherits the properties of carrier based space vector modulation and the fundamental frequency modulation strategy. The main characteristic of this modulation are the reduction of power loss, and improved harmonic performance. The carrier based space vector modulation algorithm is implemented with a TMS320F2407 digital signal processor. A Xilinx Complex Programmable Logic Device is used to develop the hybrid PWM control algorithm and it is integrated with a digital signal processor for hybrid carrier based space vector PWM generation. The inverter offers less weighted total harmonic distortion and it operates with equal electrostatic and electromagnetic stress among the power devices. The feasibility of the proposed technique is verified by spectral analysis, simulation, and experimental results.

Amplitude Modulation Response and Linearity Improvement of Directly Modulated Lasers Using Ultra-Strong Injection-Locked Gain-Lever Distributed Bragg Reflector Lasers

  • Sung, Hyuk-Kee;Wu, Ming C
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.303-308
    • /
    • 2008
  • Directly modulated fiber-optic links generally suffer higher link loss and larger signal distortion than externally modulated links. These result from the electron-photon conversion loss and laser modulation dynamics. As a method to overcome the drawbacks, we have experimentally demonstrated the RF performance of directly modulated, ultra-strong injection-locked gain-lever distributed Bragg reflector (DBR) lasers. The free-running DBR lasers exhibit an improved amplitude modulation efficiency of 12.4 dB under gain-lever modulation at the expense of linearity. By combining gain-lever modulation with ultra-strong optical injection locking, we can gain the benefits of both improved modulation efficiency from the gain-lever effect, plus improved linearity from injection locking. Using an injection ratio of R=11 dB, a 23.4-dB improvement in amplitude response and an 18-dB improvement in spurious-free dynamic range have been achieved.

An Efficiency-Optimized Modulation Strategy for Dual-Active-Bridge DC-DC Converters Using Dual-Pulse-Width-Modulation in the Low Power Region

  • Byen, Byeng-Joo;Ban, Chung-Hwan;Lim, Young-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1413-1421
    • /
    • 2017
  • In order to control the output voltage in a dual active bridge converter, this paper establishes a theoretical inductor current equation for a dual-pulse-width-modulation scheme that ensures low switching loss. It also proposes a modulation strategy that minimizes conduction loss. When compared to the conventional single-pulse-width-modulation strategy, the proposed approach can reduce the inductor current RMS and improve efficiency in the low power region, as verified through simulation and experimental results.

Modulation Instability in Dispersion and Gain Managed Fibers (이득과 분산을 조절한 광섬유의 변조 불안정성 분석)

  • Choi, Byung-Hoon;Kim, Sang-In
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.93-99
    • /
    • 2007
  • We investigated analytically and numerically the occurrence of modulation instability in fibers with periodic changes both in dispersion and gain. Previously, it has been known that the modulation instability is suppressed in dispersion managed solitons where dispersion is managed in such a way that the local dispersion alternates between the normal and the anomalous regimes. In this work, we enhanced the advantage of the dispersion management scheme by additionally introducing proper gain/loss profiles in fibers. The gain/loss profile is given by $\Gamma(z)=0.5/D(z)*(dD/dz)$, where D(z) represents the dispersion profile. The fundamental gain spectra of the modulation instability in the dispersion and gain managed fibers have been derived analytically and confirmed by numerical calculation. Our investigation reveals that in the dispersion and gain fibers the modulation instabilities are always much more suppressed compared to the case with only dispersion managed. In practical dispersion management schemes, dispersion profiles show discontinuity. and thus. the corresponding gain/loss profiles tend to be finite. In these cases, the gain/loss profiles were approximated by lumped gains/losses of finite values. Our numerical calculations confirm that this approximation also works well.

A Generalized Loss Analysis Algorithm of Power Semiconductor Devices in Multilevel NPC Inverters

  • Alemi, Payam;Lee, Dong-Choon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2168-2180
    • /
    • 2014
  • In this paper, a generalized power loss algorithm for multilevel neutral-point clamped (NPC) PWM inverters is presented, which is applicable to any level number of multilevel inverters. In the case of three-level inverters, the conduction loss depends on the MI (modulation index) and the PF (power factor), and the switching loss depends on a switching frequency, turn-on and turn-off energy. However, in the higher level of inverters than the three-level, the loss of semiconductor devices cannot be analyzed by conventional methods. The modulation depth should be considered in addition, to find the different conducting devices depending on the MI. In a case study, the power loss analysis for the three- and five-level NPC inverters has been performed with the proposed algorithm. The validity of the proposed algorithm is verified by simulation for the three-and five-level NPC inverters and experiment for three-level NPC inverter.

Experimental and Numerical Analysis of a Simple Core Loss Calculation for AC Filter Inductor in PWM DC-AC Inverters

  • Lee, Kyoung-Jun;Cha, Honnyong;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.113-121
    • /
    • 2013
  • This paper introduces a simple core loss calculation method for output filter inductor in pulse width modulation (PWM) DC-AC inverter. Amorphous C-core (AMCC-320) is used to analyze the core loss. In order to measure core loss of the output filter inductor and validate the proposed method, a single-phase half-bridge inverter and a calorimeter are used. By changing switching frequency and modulation index (MI) of the inverter, core loss of the AMCC-320 is measured with the lab-made calorimeter and the results are compared with calculated core loss. The proposed method can be easily extended to other core loss calculation of various converters.