DOI QR코드

DOI QR Code

An Efficiency-Optimized Modulation Strategy for Dual-Active-Bridge DC-DC Converters Using Dual-Pulse-Width-Modulation in the Low Power Region

  • Received : 2017.03.20
  • Accepted : 2017.07.13
  • Published : 2017.11.20

Abstract

In order to control the output voltage in a dual active bridge converter, this paper establishes a theoretical inductor current equation for a dual-pulse-width-modulation scheme that ensures low switching loss. It also proposes a modulation strategy that minimizes conduction loss. When compared to the conventional single-pulse-width-modulation strategy, the proposed approach can reduce the inductor current RMS and improve efficiency in the low power region, as verified through simulation and experimental results.

Keywords

References

  1. S. P. Engel, N. Soltau, H. Stagge, and R. W. D. Doncker, "Improved instantaneous current control for high-power three-phase dual-active bridge DC-DC converters," IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 4067-4077, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2283868
  2. S. Poshtkouhi and O. Trescases, "Flyback mode for improved low-power efficiency in the dual-active-bridge converter for bidirectional PV microinverters with integrated storage," IEEE Trans. Ind. Appl., Vol. 51, No. 4, pp. 3316-3324, Jul./Aug. 2015. https://doi.org/10.1109/TIA.2015.2409179
  3. L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli, and D. Diaz, "Dual active bridge-based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple," IEEE Trans. Power Electron., Vol. 30, No. 12, pp. 7299-7307, Dec. 2015. https://doi.org/10.1109/TPEL.2015.2413815
  4. Y. Shi, R. Li, Y. Xue, and H. Li, "optimized operation of current-fed dual active bridge DC-DC converter for PV applications," IEEE Trans. Ind. Electron., Vol. 62, No. 11, pp. 6986-6995, Nov. 2015. https://doi.org/10.1109/TIE.2015.2432093
  5. H. Qin and J. W. Kimball, "Solid-state transformer architecture using AC-AC dual-active-bridge converter," IEEE Trans. Ind. Electron., Vol. 60, No. 9, pp. 3720-3730, Sep. 2013. https://doi.org/10.1109/TIE.2012.2204710
  6. M. Ryu, D. Jung, J. Baek, and H. Kim, "An optimized design of bi-directional dual active bridge converter for low voltage battery charger," in Proc. Int. Power Electronics and Motion Control Conference and Exposition, pp. 117-183, 2014.
  7. Y. A. Harrye, K. H. Ahmed, G. P. Adam, and A. A. Aboushady, "Comprehensive steady state analysis of bidirectional dual active bridge DC/DC converter using triple phase shift control," in Proc. Int. Symposium on Industrial Electronics, pp. 437-442, 2014.
  8. W. W. A. G. Silva, P. F. Donoso-Garcia, S. I. Seleme, T. R. Oliveira, C. H. G. Santos, and A. S. Bolzon, "Study of the application of bidirectional dual active bridge cconverters in DC nanogrid energy storage systems," in Proc. Brazilian Power Electronics Conf., pp. 609-614, 2013.
  9. L. Xue, D. Boroyevich, and P. Mattavelli, "Switching condition and loss modeling of GaN based dual active bridge converter for PHEV charger," in Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 1315-1322, 2016.
  10. S. P. Engel, M. Stieneker, N. Soltau, S. Rabiee, H. Stagge, and R. W. D. Doncker, "Comparison of the modular multilevel DC converter and the dual-active bridge converter for power conversion in HVDC and MVDC grids," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 124-137, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2310656
  11. H. Fan and H. Li, "High-frequency transformer isolated bidirectional DC-DC converter modules with high efficiency over wide load range for 20 kVA solid-state transformer," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3599-3608, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2160652
  12. A. K. Jain and R. Ayyanar, "PWM control of dual active bridge: Comprehensive analysis and experimental verification," IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1215-1227, Apr. 2011. https://doi.org/10.1109/TPEL.2010.2070519
  13. T. Hirose, M. Takasaki, and Y. Ishizuka, "A power efficiency improvement technique for a bidirectional dual active bridge DC-DC converter at light load," IEEE Trans. Ind. Appl., Vol. 50, No. 6, pp. 4047-4055, Nov./Dec. 2014. https://doi.org/10.1109/TIA.2014.2327147
  14. G. O. GermAn, O. G. Guillermo, and R. O. Alejandro, "Switching control strategy to minimize dual active bridge converter losses," IEEE Trans. Power Electron., Vol. 27, No. 7, pp. 1826-1838, Jul. 2009.
  15. B. Hua and M. Chris, "Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control," IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2905-2914 , Dec. 2008. https://doi.org/10.1109/TPEL.2008.2005103
  16. Z. Biao, Y. Qingguang, and S. Weixin, "Extended-phase-shift control of isolated bidirectional DC- DC converter for power distribution in microgrid," IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4667-4680, Nov. 2012. https://doi.org/10.1109/TPEL.2011.2180928
  17. Z. Biao, S. Qiang, and L. Wenhua, "Power characterization of isolated bidirectional dual-active-bridge DC-DC converter with dual-phase-shift control," IEEE Trans. Power Electron., Vol. 27, No. 9, pp. 4172-4176, Sep. 2012. https://doi.org/10.1109/TPEL.2012.2189586
  18. Z. Biao, S. Qiang, L. Wenhua, and S. Weixin, "Current-stress-optimized switching strategy of isolated bidirectional DC-DC converter with dual-phase-shift control," IEEE Trans. Power Electron., Vol. 60, No. 10, pp. 4458-4467, Oct. 2013.
  19. B. J. Byen, B. H. Jeong, J. H. Kim, and G. H. Choe, "Improved efficiency methodology of 100kW-energy storage system with wide-voltage range for DC distribution," Transactions of Korea Institute of Power Electronics (KIPE), Vol. 22, No. 1, pp. 44-52, Feb. 2017. https://doi.org/10.6113/TKPE.2017.22.1.44
  20. F. Krismer and J. W. Kolar, "Efficiency-optimized high-current dual active bridge converter for automotive applications," IEEE Trans. Ind. Electron., Vol. 59, No. 7, pp. 2745-2760, Jul. 2012. https://doi.org/10.1109/TIE.2011.2112312