• Title/Summary/Keyword: Modular converter

Search Result 212, Processing Time 0.021 seconds

Modular Multilevel Converter Based STATCOM Topology Suitable for Medium-Voltage Unbalanced Systems

  • Pirouz, Hassan Mohammadi;Bina, Mohammad Tavakoli
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.572-578
    • /
    • 2010
  • This paper discusses a transformerless shunt static compensator (STATCOM) based on a modular multilevel converter (MMC). It introduces a new time-discrete appropriate current control algorithm and a phase-shifted carrier modulation strategy for fast compensation of the reactive power and harmonics, and also for the balancing of the three-phase source side currents. Analytical formulas are derived to demonstrate the accurate mechanism of the stored energy balancing inside the MMC. Various simulated waveforms verify that the MMC based STATCOM is capable of reactive power compensation, harmonic cancellation, and simultaneous load balancing, while controlling and balancing all of the DC mean voltages even during the transient states.

Study on the Failure Protection Mechanism for the Low Voltage Converter Module of Power Control and Distribution Unit (전력조절분배기 저전압 컨버터 모듈의 고장 방지에 대한 연구)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jang, Sung-Soo;Lee, Sang-Kon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.285-288
    • /
    • 2008
  • Even though many modular converters have several internal protection circuit blocks for various abnormal operation conditions, there are many failure cases on modular converters at real applications. In this paper, the control strategy for failure protection of converters with internal 'In-Hibit' function is investigated. As an example, for the MDl modular converters the in-hibit function application is realized and the test results shows that adopting in-hibit function while converter switching reduces the voltage and current stress. And the reduction of switching stress on converter will decrease failure rate on converters.

  • PDF

MMC(Modular Multi-level Converter) type 25MVA HVDC System Test (MMC(Modular Multi-level Converter) type 25MVA HVDC 시스템 시험)

  • Jeong, Jong-kyou;Jung, Hong-ju;Yoo, Hyun-ho;Lee, Doo-young
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.438-439
    • /
    • 2018
  • 본 논문은 (주)효성 중공업연구소에서 국책과제를 통해 자체 개발한 MMC(Modular Multi-level Converter) type ${\pm}12kV$ 25MVA HVDC 시스템의 시험결과에 대해 소개한다. 제주에 구축된 HVDC 실증단지는 국내 유일의 MMC type 전압형 HVDC 시스템이며 11-레벨의 AC 출력 전압을 형성하는 2개의 컨버터가 Back-to-Back 형태로 구성되어 있다. 각 컨버터의 AC 출력단은 각각 계통과 풍력발전단지에 연계되어 풍력발전단지에서 생산된 전력을 계통으로 전송하는 역할을 한다. 본 논문에서는 국책과제의 정량적 목표항목을 달성하기 위한 시험을 수행한 결과에 대해서 소개한다.

  • PDF

Power Flow Control of Modular Multilevel Converter based on Double-Star Bridge Cells Applying to Grid Connection

  • Hamasaki, Shin-Ichi;Okamura, Kazuki;Tsuji, Mineo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.246-253
    • /
    • 2013
  • The Modular Multilevel Converter (MMC) with full bridge cells is available for utility interactive inverter in high voltage line. When it is interconnected with power line, it is possible to control the active power flow in order to supply or charge the power in the line. This research applied the MMC to grid connection system of distributed generator and a power flow control for the MMC is investigated. Theory of power flow between the MMC and the power line is described and control method of power flow and capacitor voltages on arm cells for the MMC are proposed. And effectiveness of the proposed control method is presented by simulation.

Harmonic Analysis of a Modular Multilevel Converter Using Double Fourier Series

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Ahn, Jin Hong;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.298-306
    • /
    • 2018
  • This paper presents a harmonic analysis of the modular multilevel converter (MMC) using a double Fourier series (DFS) algorithm. First, the application of DFS for harmonic calculation in the MMC is made by considering the effect of arm inductor. The analytical results are then confirmed by comparing with the simulation results of using the fast Fourier transform (FFT) algorithm. Finally, distribution of harmonics and total harmonic distortion (THD) in the MMC will be analyzed in three cases: harmonics versus number of levels of MMC, harmonics versus total switching frequency and harmonics versus modulation index. The simulation results are performed in the PSCAD/EMTDC simulation program in order to verify the analytical results obtained by Matlab programming.

Design of Zero-sequence Current Controller in Modular Multilevel Converter (Modular Multilevel Converter에서 영상분 전류제어기의 설계)

  • Kim, Tae-Hyeong;Lee, Jong-Hak;Kim, Dong-Hwan;Kwon, Byung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.55-56
    • /
    • 2014
  • 본 논문에서는 ${\Delta}$결선 또는 3상 4선식 Y결선으로 구성된 Modular Multilevel Converter(MMC)의 동기좌표계에서의 영상분 전류제어방법을 제안한다. 제안된 영상분 전류제어방법은 새로운 가상 2상 전류 생성방법을 사용하며, 기존의 가상 2상 전류 생성방법보다 과도상태 응답특성과 파라미터 오차에 대한 성능이 우수함을 시뮬레이션을 통해 검증하였다.

  • PDF

Control of Circulating Current in Modular Multilevel Converter under Unbalanced Voltage using Proportional-Resonant Controller

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.143-144
    • /
    • 2016
  • The circulating current control within the phase legs is one of the main control objectives in a modular multilevel converter (MMC) under different operating conditions. This paper proposes a control strategy of circulating currents in the MMC under unbalanced voltage by using a proportional-resonant (PR) controller. Under the unbalanced voltage, the circulating currents in the MMC consists of three components such as positive-sequence, negative-sequence, and zero-sequence circulating currents. With the PR controller, all components of the circulating current will be directly controlled in the stationary reference frame without decomposing into positive- and negative-sequence components. Thus, the ripples in the circulating currents and the DC current are suppressed under the unbalanced voltage. The effectiveness of the proposed method is verified by simulation results based on PSCAD/EMTDC simulation program.

  • PDF

A High-Power Step-up Converter with High Efficiency and Fast Control-to-Output Dynamics

  • Kang, Jeong-il;Roh, Chung-Wook;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.78-87
    • /
    • 2001
  • A new high-power step-up based on the two-module parallel-input (PISO) modular dual inductor-fed push-pull converter is proposed. The proposed converter is operated at a constant duty cycle and employs and auxiliary circuit to control the output voltage with a phase-shift between two modules. It shows a high efficiency due to the greatly reduced switch turn-off stress. It also shows a high and linear voltage conversion ratio, low current stress in the output capacitor, and fast control-to-output dynamics. The operation principles and the mathematical models of the proposed converter are presented. Features of the proposed converter are discussed in comparison with the two-module PISO modular dual inductor-fed push-pull converter. Also, experimental results from a 50kHz, 800W, 350 Vdc prototype with an input voltage range of 20-32 Vdc are provided to confirm the validity of the proposed converter. The new converter compares favorably with the conventional counterpart, and is considered well siuted to high-power step-up applications.

  • PDF

Prototype Development of 3-Phase 3.3kV/220V 6kVA Modular Semiconductor Transformer (3상 3.3kV/220V 6kVA 모듈형 반도체 변압기의 프로토타입 개발)

  • Kim, Jae-Hyuk;Kim, Do-Hyun;Lee, Byung-Kwon;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1678-1687
    • /
    • 2013
  • This paper describes a prototype of 3-phase 3.3kV/220V 6kVA modular semiconductor transformer developed in the lab for feasibility study. The developed prototype is composed of three single-phase units coupled in Y-connection. Each single-phase unit with a rating of 1.9kV/127V 2kVA consists of a high-voltage high-frequency resonant AC-DC converter, a low-voltage hybrid-switching DC-DC converter, and a low-voltage hybrid-switching DC-AC converter. Also each single-phase unit has two DSP controllers to control converter operation and to acquire monitoring data. Monitoring system was developed based on LabView by using CAN communication link between the DSP controller and PC. Through various experimental analyses it was verified that the prototype operates with proper performance under normal and sag condition. The system efficiency can be improved by adopting optimal design and replacing the IGBT switch with the SiC MOSFET switch. The developed prototype confirms a possibility to build a commercial high-voltage high-power semiconductor transformer by increasing the number of series-connected converter modules in high-voltage side and improving the performance of switching element.

Novel Control of a Modular Multilevel Converter for Photovoltaic Applications

  • Shadlu, Milad Samady
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • The number of applications of solar photovoltaic (PV) systems in power generation grids has increased in the last decade because of their ability to generate efficient and reliable power in a variety of low installation in domestic applications. Various PV converter topologies have therefore emerged, among which the modular multilevel converter (MMC) is very attractive due to its modularity and transformerless features. The modeling and control of the MMC has become an interesting issue due to the extremely large expansion of PV power plants at the residential scale and due to the power quality requirement of this application. This paper proposes a novel control method of MMC which is used to directly integrate the photovoltaic arrays with the power grid. Traditionally, a closed loop control has been used, although circulating current control and capacitors voltage balancing in each individual leg have remained unsolved problem. In this paper, the integration of model predictive control (MPC) and traditional closed loop control is proposed to control the MMC structure in a PV grid tied mode. Simulation results demonstrate the efficiency and effectiveness of the proposed control model.