• Title/Summary/Keyword: Modular Construction System

Search Result 173, Processing Time 0.028 seconds

Lateral-resisting Structural Systems for Tall Modular Buildings (모듈러 건축물의 수평력 저항 구조시스템)

  • Lee, Chang-Hwan;Chung, Kwang-Ryang
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.79-88
    • /
    • 2016
  • Modular buildings are constructed by assembling modular units which are prefabricated in a factory and delivered to the site. However, due to a problem of noise between floors, concrete slab is usually poured at the top or bottom level of a modular unit in Korea. This greatly increases the weight of buildings, but designing vertical members of modular units to resist overall gravity loads is very inefficient. In this study, considering domestic building construction practices, feasible structural systems for tall modular buildings are proposed in which separate steel frames and reinforced concrete core walls are designed to resist gravity and lateral loads. To verify performance, a three-dimensional structural analysis has been performed with two types of prototype buildings, i.e., a residential building and a hotel. From the results, wind-induced lateral displacements and seismic story drifts are examined and compared with their limit values. Between the two kinds of buildings, the efficiency of the proposed system is also evaluated through a comparison of the weight of structural components. Finally, the effect of a floor diaphragm on the overall behavior is analyzed and discussed.

A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.

Analytical Models of Beam-Column joints in a Unit Modular Frame (단위 모듈러 구조체의 보-기둥 접합부 해석 모델)

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.663-672
    • /
    • 2014
  • Recently, modular structural systems have been applicable to building construction since they can significantly reduce building construction time. They consists of several unit modular frames of which each beam-column joint employs an access hole for connecting unit modular frames. Their structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of a traditional steel moment-resisting system. In order to obtain the validation of this assumption, the cyclic characteristics of beam-column joints in a unit modular frame should be investigate. This study carried out finite element analyses(FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into partial moment connections. Also, this study develops a simple spring model for earthquake nonlinear analyses and suggests the Ramberg-Osgood hysteretic rule to capture the cyclic response of unit modular frames.

A Study on the Automatic Design of Unit Modular House Using Component and Unit DB (부품 및 유닛 DB를 이용한 유닛 모듈라 주택의 설계자동화 연구)

  • Lim Seok-Ho;Kim Soo-Am;Hwang Eun-Kyung
    • Journal of the Korean housing association
    • /
    • v.17 no.3
    • /
    • pp.41-49
    • /
    • 2006
  • Precast concrete apartments were main stream of domestic industrialized housing around 90's, and Steel Houses applying Steel Stud technique with light weighted steel have been dominant portion since 1995. On the other hand, various building techniques including Steel Stud method and highly prefabricated and industrialized Unit method are prevailing in developed countries like Japan. Steel stud and unit box have their own merits and demerits, but the more crucial aspect is that the constant design standard should be applied in each design procedure. It entails the necessity of industrial housing development on the open system basis. In this study, the design standard for unit house will be established coping with the established preparing standard for design specifications defined by architectural law and promotion law of housing construction. That is for design standard of industrialized private housing on the open system basis. This study attempts to propose the design automation, with the method of unit construction of which the rate of pre-fabrication is the biggest, that can cope with the demand of user on the basis of open-system. Ticky-tacky is the biggest technical problem in suppling industrialization housing. Therefore, we will suggest a basic plan for design automation of unit modular housing which can raise the productivity of industrialization housing by applying open system, utilized by DB of component and unit, and solve the problem concerned about ticky-tacky.

A Study on Development of BIM Library for Unit Modular Housing - Focused on Small-sized Urban-life-housing - (유닛모듈러 주택의 BIM 라이브러리 개발 연구 - 소규모 도시형 생활주택을 중심으로 -)

  • Lee, Chang-Jae;Lim, Seok-Ho
    • Journal of the Korean housing association
    • /
    • v.23 no.6
    • /
    • pp.11-20
    • /
    • 2012
  • This Study developed library of parts, applied with 3-dimension character which has width, length and height and a reference plane, for the system development of BIM design on housing unit modular. The current BIM software has not the concept of a reference plane or work tolerance in modular, so the development of parts library applied to unit modular has not moved forward. So, we developed, in this study, parts library applied to windows, built-in-furniture, kitchen systems and knock down bathrooms, with a reference plane and work tolerance based on single roon prototype on urban-life-housings. BIM library can utilize changed size and work tolerance of parts, and fabricating reference plane will be created automatically when an engineer puts work tolerance in the BIM library with supplement of some category related to work reference. Through this BIM library development, we consider the part module can be used for housing complex planning, and architectural designers will be able to utilize the BIM library for housing complex design.

Design Strength of Non-symmetric Composite Column for Modular Unit Frames (모듈러 유닛 골조용 비대칭 합성기둥의 설계강도)

  • Park, Keum-Sung;Lee, Sang-Sup;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.101-109
    • /
    • 2018
  • Modular structural systems have been used increasingly for low- and mid-rise structures such as school and apartment buildings. Studies have recently been conducted on the application of the modular structural system to high-rise buildings. To provide sufficient resistances and economical construction for the high-rise modular structural system, a composite unit modular structure was proposed. In this study, the strength of the non-symmetric composite column for the proposed composite unit modular structure was investigated through a series of tests. The experimental study focused on the effect of the slenderness of the column, eccentricity, and through bars on the strength of such a column. Design equations for the non-symmetric column for a modular unit structure were also proposed. From the results, it was found that the proposed design equations provide reasonable strength prediction of the non-symmetric composite column for the modular unit structure.

Structural Performance of Beam-Middle Column Connection of 12m × 3m Steel Modular System (12m × 3m 스틸 모듈러 시스템의 보-중간기둥 접합부 구조성능)

  • Shim, Sung Chul;Lee, Sang Hyun;Jo, Bong Ho;Woo, Sung Sik;Choi, Mun Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.793-805
    • /
    • 2008
  • Recently, steel modular systems are developed and have been applied to the projects requiring fast construction such as military barracks and vertical expansion of school buildings. The existing modular system with standard module of ${6m\times3m}$ has a problem that many columns are duplicated in the module connection and the wall thickness increases. In this study, $12m{\times}3m$ module is proposed to solve this problem. Various types of beam-middle column connection which are essential for realizing the $12m{\times}3m$ module are proposed and their maximum load capacity and failure mode are analytically and experimentally evaluated. The comparison between analytical and experimental results shows that the maximum axial load and failure mode can be accurately estimated by finite element analysis. Some connection types which have higher failure load than the design load of the column, can be used as the beam-middle column connection detail of the $12m{\times}3m$ module.

An Experimental Study on Development Connection System of Concrete Barrier in Modular Bridges (조립식교량의 콘크리트 방호울타리 연결시스템 개발을 위한 실험적 연구)

  • Jung, Ho Sung;Lee, Sang Seung;Choi, Jin Woong;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Recently, in field of bridge construction, modular technology has been studied to reduce construction period. However, main stream of the study is limited to the pier, girder and deck of bridge, which are huge or main members. Studies on incidental facilities like concrete barrier is out of sight. Thus, in this study, connection system of concrete barrier was developed to apply to modular bridges and static experiment was performed in order to verify structural capability of proposed system. Variables of experiment are composed of bolt direction such as vertical and horizontal. The experimentation due to the designed variables was conducted by comparison with a standard concrete barrier, which is a traditional barrier. As a result, vertical joint way of the bolt showed nearly identical structural performance and healthy to standard specimen's. it can be applied to modular bridges.

A new design concept for ocean nuclear power plants using tension leg platform

  • Lee, Chaemin;Kim, Jaemin;Cho, Seongpil
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.367-378
    • /
    • 2020
  • This paper presents a new design concept for ocean nuclear power plants (ONPPs) using a tension leg platform (TLP). The system-integrated modular advanced reactor, which is one of the successful small modular reactors, is mounted for demonstration. The authors define the design requirements and parameters, modularize and rearrange the nuclear and other facilities, and propose a new total general arrangement. The most fundamental level of design results for the platform and tendon system are provided, and the construction procedure and safety features are discussed. The integrated passive safety system developed for the gravity based structure-type ONPP is also available in the TLP-type ONPP with minor modifications. The safety system fully utilizes the benefits of the ocean environment, and enhances the safety features of the proposed concept. For the verification of the design concept, hydrodynamic analyses are performed using the commercial software ANSYS AQWA with the Pierson-Moskowitz and JONSWAP wave spectra that represent various ocean environments and the results are discussed.

A Study on the Standardization of the Built-in Wardrobe by Housing Inside Dimension (공동주택 안목치수 설계기준에 의한 붙박이장의 표준화방안 연구)

  • Lee, Ga-Kyung;Lim, Seok-Ho
    • Journal of the Korean housing association
    • /
    • v.21 no.6
    • /
    • pp.53-60
    • /
    • 2010
  • Built-in wardrobe is constructing after ordering and making, because built-in wardrobe's size is fixed as housing measurement. It is hard to speak built-in wardrobe components of construction in these ways, and application of an MC (Modular Coordination) design system is meaningless too. And above all, measurement before construction isn't to expect standardization, and to increase custom-made furniture. So I suggest the standardization of built-in wardrobe utilizing standard last finish and reference plane in order to prevent an evil influence of built-in wardrobe's construction. And we utilized a reference plane, and we present construction document and design plan in order to solve these problems. The first stage, we investigate manufacture of a preferential domestic system kitchen and construction state, and we derive from a problem in viewpoints of standardization for this. And we analyze an effect got by application of the assembly basis aspect that we presented, and we can raise efficiency of standardization of housing and construction industry, and we light ultimately up. I will apply a standardization plan as above, and define that this assures a standardization of components and an economic effect.