• Title/Summary/Keyword: Modified rayleigh number

Search Result 17, Processing Time 0.023 seconds

Natural convection cooling of discrete heaters with same heat generation in a vertical open top cavity (상부가 개방된 수직 캐비티내에 장착된 불연속 균일 발열체의 자연대류 냉각)

  • Yu, Gap-Jong;Chu, Hong-Rok;Kim, Byeong-Ha;Choe, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • Natural convection cooling of discrete heaters located in a two-dimensional vertical open top cavity is investigated experimentally. The five discrete heaters with same heat generation are located on the wall of the cavity. The heaters are arranged in two configurations; flush-mounted on a vertical wall and protruding from the wall about 4.5 mm. The materials used for the vertical walls are copper and epoxy-resin, and air is used as the cooling fluid. The temperature and flow fields in the cavity were visualized by means of Mach-Zehnder interferometer and smoke-method. Also, local temperature measurements are made along the vertical wall. Results are obtained for cavity aspect ratios of 4.6, 7.5 and 9.5 and modified Rayleigh numbers ranging from 10$^{3}$ to 10$^{6}$ . Results indicate that the cooling efficiency for the copper wall is superior to that of the epoxy-resin. For the epoxy-resin wall, the protrusion of the heaters plays a role in decreasing the heat transfer performance. The location of maximum temperature is significantly influenced by the wall materials and heater configurations. Correlations relating the Nusselt number to the modified Rayleigh number are proposed.

The Natural Convection in Horizontal Porous Layer with Vertical or Horizontal Throughflow (수직$\cdot$수평 관통류를 갖는 수평 다공층에서 자연대류 연구)

  • Seo S. J.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.73-81
    • /
    • 1998
  • The effect of vertical or horizontal throughflow on natural convection in horizontal porous layer was investigated. The computations were performed by employing Darcy-Brinkman-Forchheimer equation to consider the effect of inertia and viscous effect. The patterns of streamlines and isotherms are observed by changing the strength of throughflow. The vertical throughflow stabilizes the natural convection in porous layer. It also disturbs the developing vertical and horizontal velocity component of natural convection cell and increases the critical modified Rayleigh number. The horizontal throughflow influences the stabilization of natural convection in porous layer much more than the vertical throughflow. And it changes a stable convection into a oscillatory convection.

  • PDF

Natural Convection Heat Transfer from a Horizontal Heat Exchanger Tube with a Fin (單一핀을 가진 水平管에서의 自然對流 熱傳達)

  • 정한식;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.279-286
    • /
    • 1987
  • An numerical and experimental study has been performed on natural convection heat transfer from a horizontal heat exchanger tube with a fin. At s bare tube, by increasing $C_{T}$ (tube conduction parameter), mean Nusselt number and outer wall temperature are apparently increased at $C_{T}$.leq.300, slightly increased at $C_{T}$>300 and they can be represented in an exponential function of $C_{T}$. Natural convection heat transfer characteristics for the tube with a fin at given Rayleigh number are well agreed by those for an isothermal cylinder at a modified Rayleigh number. The local fin Nusselt number of the tube with a downward fin is much higher than that of the tube with an upward fin. The comparisons between numerical and experimental results showed good agreement.reement.

Unstable Interface Phenomena in a Micro Channel

  • Inamuro T.;Kobayashi K.;Yamaoka Y.;Ogino F.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.118-120
    • /
    • 2003
  • The behavior of viscous fingerings caused by an external force is investigated by using a two­phase lattice Boltzmann method. The effects of the modified capillary number, the viscosity contrast, and the modified Darcy-Rayleigh number on the instability of interfaces are found. The calculated wave numbers are in good agreement with the theoretical ones in the range of wave numbers smaller than 10, but the calculated ones tend to become smaller than the theoretical ones in higher wave numbers.

  • PDF

A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm (PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구)

  • Choi, Y.G.;Chung, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF

Natural Convection Heat Transfer in a Hemispherical Pool with Volumetric Heat Sources (체적 열원이 내재된 반구에서의 자연대류 열전달)

  • Park, Hae-Kyun;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.135-141
    • /
    • 2015
  • The core melts stratifies into lower mixture layer and upper metal layer by density in a severe accident condition. The decay heat generated from the mixture layer threatens the integrity of the reactor vessel. This study simulated the natural convection heat transfer of the mixture layer with volumetric heat source using the mass transfer system. $H_2SO_4-CuSO_4$ electroplating system was used as the mass transfer system. With the modified Rayleigh number of $3{\times}10^{14}$, the Nusselt number showed minimum at the bottom and increased along curvature to the top of the experimental apparatus.

Free Convection due to Vertical Isothermal Wires Immersed in Water near its Density Extremum (최대밀도점 부근의 물 속에 잠겨있는 수직 등온 강선에 의한 자연대류)

  • Eom, Y.K.;Riu, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.338-350
    • /
    • 1996
  • A numerical analysis is carried out to study the two-dimensional steady state natural convection from vertical wires immersed in cold pure water. The surface of the wire is $0^{\circ}C$ unifrom temperature. Results of the analysis are presented for free stream temperature from $0^{\circ}C$ to $25^{\circ}C$ and the aspect ratio N from $5.26{\times}10^{-3}$ to $1.0{\times}10^{-3}$. The effects of the density extremum and aspect ratio on the flow pattern and the heat transfer characteristics are discussed As the aspect ratio N becomes larger, in the range of $1.0^{\circ}C{\leq}T_{\infty}{\leq}4.4^{\circ}C$ and $6{^{\circ}C}{\leq}T_{\infty}{\leq}17^{\circ}C$, the effect of Pr number on the heat transfer is shown to be more significant than the aspect ratio. Investigating into the effect of the density extremum on the heat transfer from wires, the new heat transfer correlations are suggested with the relation of average Nu mumber vs. modified Ra number. Here, the coefficient values C of correlations are presented as the function of density extremum parameter $R^*$. The effects of the density extremum parameter are also discussed.

  • PDF

A Study of the Convective Heat Transfer in a Vertical Channel of an Array of Heated Protrusions (수직 채널내의 가열 돌출 배열에서의 대류 열전달)

  • B. J, Baek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.844-853
    • /
    • 1998
  • Natural and forced convection experiments were carried out in order to investigate the effects of channel spacing gap between protrusions and number of rows of protrusion, In natural convection the optimum channel spacing was found to be approximately 20mm regardless of the protrusion gaps. For optimum channel spacing the heat transfer coefficients were converged to an asymptotic value after the fourth row. The heat transfer coefficient for each row approaches to constant values for protrusion gaps larger than 10 mm. An experimental correlation has been suggested by using a modified Rayleigh number based on the dimensionless characteristic length(G/L). In forced convec-tion the heat transfer coefficients were not merged to an asymptote until the fifty row and increases as the channel spacing at the constant Reynolds number decreases.

  • PDF

Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat SourcesZ

  • Lee, Heedo;Park, Goon-cherl
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.496-506
    • /
    • 1998
  • This paper deals with the computational modeling of buoyancy-driven turbulent heat transfer involving spatially uniform volumetric heat sources in semicircular geometry. The Launder & Sharma low-Reynolds number k-$\varepsilon$ turbulence model without any modifications and the SIMPLER computational algorithm were used for the numerical modeling, which was incorporated into the new computer code CORE-TNC. This computer code was subsequently benchmarked with the Mini-ACOPO experimental data in the modified Rayleigh number range of 2$\times$10$^{13}$ $\times$10$^{14}$ . The general trends of the velocity and temperature fields were well predicted by the model used, and the calculated isotherm patterns were found to be very similiar to those observed in previous experimental investigations. The deviation between the Mini-ACOPO experimental data and the corresponding numerical results obtained with CORE-TNC for the average Nusselt number was less than 30% using fine grid in the near-wall region and the three-point difference formula for the wall temperature gradient. With isothermal pool boundaries, heat was convected predominantly to the upper and adjacent lateral surfaces, and the bottom surface received smaller heat fluxes.

  • PDF

Two- and three-dimensional experiments for oxide pool in in-vessel retention of core melts

  • Kim, Su-Hyeon;Park, Hae-Kyun;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1405-1413
    • /
    • 2017
  • To investigate the heat loads imposed on a reactor vessel through the natural convection of core melts in severe accidents, mass transfer experiments were performed based on the heat transfer/mass transfer analogy, using two- (2-D) and three-dimensional (3-D) facilities of various heights. The modified Rayleigh numbers ranged from $10^{12}$ to $10^{15}$, with a fixed Prandtl number of 2,014. The measured Nusselt numbers showed a trend similar to those of existing studies, but the absolute values showed discrepancies owing to the high Prandtl number of this system. The measured angle-dependent Nusselt numbers were analyzed for 2-D and 3-D geometries, and a multiplier was developed that enables the extrapolation of 2-D data into 3-D data. The definition of $Ra^{\prime}_H$ was specified for 2-D geometries, so that results could be extrapolated for 3-D geometries; also, heat transfer correlations were developed.