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Abstract

The behavior of viscous fingerings caused by an external force is investigated by using a two-
phase lattice Boltzmann method. The effects of the modified capillary number, the viscosity
contrast, and the modified Darcy-Rayleigh number on the instability of interfaces are found. The
calculated wave numbers are in good agreement with the theoretical ones in the range of wave
numbers smaller than 10, but the calculated ones tend to become smaller than the theoretical
ones in higher wave numbers.
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1. Introduction

The behavior of two-phase flows in micro channels is of interest in relation to MEMS (Micro
Electro Mechanical Systems) devices. Viscous fingering is one of interesting phenomena in
such flows. So far, many investigations of viscous fingering have been performed by using
experimental, numerical, and theoretical approaches [1]-[4]. However, the driving force of flows
in the above researches was caused mainly by a pressure difference. Considering a capillary
force in micro channels, the effect of an external force on the viscous fingering is important. In
this paper, we apply a two-phase lattice Boltzmann method [5] to the investigation of interfacial
instability of two-phase flows in a micro channel.

2. Numerical Method

Two-phase fluids flows in a narrow channel with length L and height h are considered (see
Fig. 1). Assuming that the aspect ratio h/L is small and the flow velocity in the z-direction has
a parabolic profile, we calculate two-phase flows only in the two-dimensional z- and y-directions.
Hereinafter, non-dimensional variables, which defined by using a characteristic length h, a char-
acteristic particle speed ¢, a characteristic time scale tg = h/U where U is a characteristic flow
speed, and a reference density pg, are used as in Ref. [6]. The 2D9V mode! is used in the present
paper. The physical space is divided into a square lattice, and the evolution of particle popu-
lation at each lattice site is computed. Two particle velocity distribution functions, f; and g;,
are used. The function f; is used as an index function for the calculation of interface profiles,
and the function g; is used for the calculation of pressure and velocity of two-phase fluids with
the same density. The evolution of the particle distribution functions f;(x,t) and g;(x,t) with
velocity c; at the point @ and at time ¢ is computed by the following equations:
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where f{9 and g;? are the equilibrium distribution functions given in Ref. [5], 7; and 7, are

dimensionless single relaxation times, Ax is a spacing of the lattice, At is a time step, ¢; is
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Fig. 1: Flow through a narrow channel. Fig. 2 Computational domain.

the particle velocity, and F, is the external force. The second term of the right side of Ba.(2)
represents the viscous force from the top and bottom walls, and the jast term represents the
external force applying 1o the fuids. The index function ¢ representing an interface and the
macroscopic variables of the two-phase fluids (the pressure p and the velocity u) are defined in
terms of the two particle velocity distribution functions as follows:
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Applying the asymptotic theory [6] to Eqs.(1)-(3), it is found that the Macroscopic variables sat-
isty 'mcompressible Navie-Stokes equations for two-phase fuids with relative errors of O{(Am)z}.

3. Results and PDiscussion

A computational domain is shown in Fig. 2. The aspect 1atio is h/L = 0.02. A free slip
boundary condition 18 used on the top and bottom walls and free inlet and outlet conditions
are applied t0 the lateral sides of the domain. The domain is divided into 2 400 x 400 square
lattice. Two-phase Quids, black and white portions shown in Fig. 2, are filled in the channel.
The external force is applied only to the black fluid after t = 0. The initial velocity 18 calculated
by the Darcy’s law Uz = k/ui(—dp/dw + F;), where k is the permeabihty (k = h?/12). The
dimensionless parameters for the present problem are the modified capillary aqumber Cd' =
12 UL/ oh?, the viscosity contrast B = (#17 po)/ (it pn), and the modified Darcy-Rayleigh
aumber G = h2(FaAz — FAz)/12U7 (py + p2) (7 where o is the interfacial tension, U* is the
average velocity of the interface at the time when the disturbance occurs, and the subscripts 1
and 2 represent the downstream and upstream fluids, respectively.

Figure 3 shows the calculated results of the time evolution of the interfacial shapes. In
Fig. 3(a), the initial shape is given by & large sine-wave as an initial disturbance. After the
flow starts, the large disturbance is settled down with the time. Therefore, in the case that the
. external force i applied only to the downstream fluid, the interface 18 stable. In Figs. 3(b)-(e)s
the external force i8 applied only to the upstream fluid, and a small and random disturbance
ig given.to the initial velocity at the interface. gix different random disturbances are used.
As the time passes; the small disturbance grows Jarger and larger, and finally we can observe
viscous fingers. These results indicate that the case that the external force 18 applied only to
the upstream fluid 18 unstable. Comparing Figs: 3(c), (d) and () with (b), the modified Darcy-
Rayleigh purmber G of (c) is larger than that of (b), the viscosity contrast B of (d) is larger than
that of (b); and the capillary aumber Ca' of (e) is smaller than that of (b). Thus, it is found
that as Ca', B and G increasé, vigcous fingering grows up larger.

From the linear stability analysis, the theoretical wave aumber of ingers is given as follows {7}t

_ e
Neneo = 57~ 3(B+1) 4)

The relation between the calculated wave numbers Nobs and the theoretical ones is shown in
Fig. 4. The error bars represent the difference among the initial disturbances, and the circles
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Fig. 3: The time evolution of the interfacial shapes (t* Fig. 4: Comparison of
tU*/h): (a) Ca’ = 00, B =0,G = —0.625; (b) Ca’ =3060,B =  calculated wave numbers
0,G = 1.22; (¢) Ca’ = 3050,B = 0,G = 6.12; (d) Cd Nobs with theoretical ones
3030,B=0.6,G = 1.23; (¢) Ca’ =1010,B=0,G = 1.24. Niheo-

stand for the averaged value. The wave numbers of the present results are in agreement with
the theoretical ones in the range of wave numbers smaller than 10, but Ny, tends to become
smaller than Nije, in higher wave numbers.

4. Conclusions

We have applied a two-phase lattice Boltzann method to the simulations of viscous fin-
gerings caused by an external force in a micro channel. From the computations, the following
results are obtained.

e As the modified capillary number, the viscosity contrast, and the modified Darcy-Rayleigh
number increase, viscous fingering grows up larger.

e The calculated wave numbers are in good agreement with the theoretical ones in the range
of wave numbers smaller than 10, but the calculated ones tend to become smaller than the
theoretical ones in higher wave numbers.
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