• Title/Summary/Keyword: Modified Power-Law Model

Search Result 55, Processing Time 0.022 seconds

PULSATILE FLOW SIMULATION OF A NON-NEWTONIAN FLUID THROUGH A BIFURCATION TUBE USING THE CFD ANALYSIS (CFD를 이용한 분지관 비뉴턴 해석)

  • Hwang, D.;Yoo, S.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.177-180
    • /
    • 2008
  • The objective of this study is to get simulation data about pulsatile flow of a non-Newtonian fluid through a bifurcated tube. All the process was based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. To define a non-Newtonian fluid, the following viscous models are used; the Powell-Eyring model, the modified Powell-Eyring model, the Cross model, the modified Cross model, the Carreau model, the Carreau-Yasuda model and the modified Power Law model. The flow calculation data using each model were compared with the other data of a existing paper. Finally, the Carreau model was recognized to give the best result with the SC/Tetra code, and the succeeding simulations are made with the model. For the pulsating flow condition, the sine wave type velocity profile is given as the inlet boundary condition. To investigate the effect of geometries and mesh, the pre-test is carried out with various curvature conditions of the bifurcated corner, and then with various mesh conditions. The final process is to calculate flow variables such as the wall shear stress (WSS) and the wall shear stress gradient (WSSG). To validate all the result, the simulation is compared with the existing data of the other papers. Generally speaking, there is a noticeable difference in the maximum and minimum value of WSS. It is not sure that the values in each data are on the exactly same location. However, the overall trend is similar. The next study needs to investigate the same situation by experimental method. Furthermore, if the flow is simulated with more pulsatile conditions, more data of flow field through a bifurcated tube could be achieved.

  • PDF

Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection

  • Wu-Bin Shan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • Employing the non-local strain gradient theory (NSGT), this paper investigates the nonlinear resonance characteristics of functionally graded material (FGM) nanoshells with initial geometric imperfection for the first time. The effective material properties of the porous FGM nanoshells with even distribution of porosities are estimated by a modified power-law model. With the guidance of Love's thin shell theory and considering initial geometric imperfection, the strain equations of the shells are obtained. In order to characterize the small-scale effect of the nanoshells, the nonlocal parameter and strain gradient parameter are introduced. Subsequently, the Euler-Lagrange principle was used to derive the motion equations. Considering three boundary conditions, the Galerkin principle combined with the modified Lindstedt Poincare (MLP) method are employed to discretize and solve the motion equations. Finally, the effects of initial geometric imperfection, functional gradient index, strain gradient parameters, non-local parameters and porosity volume fraction on the nonlinear resonance of the porous FGM nanoshells are examined.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

Numerical analysis of drag reduction of turbulent flow in a pipe (원관내 난류의 저항감소현상에 대한 수치해석)

  • 홍성진;김광용;최형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.733-739
    • /
    • 1999
  • A modified low-Re $k-\varepsilon$ model is used for the calculation of drag-reducing turbulent flow by polymer injection in a pipe. With the viscoelastic model, molecular viscosity in the definition of turbulent viscosity is related to elongations viscosity of the solution to account for the effects of drag reduction. Finite volume method is used for the discretization, and power-law scheme is used as a numerical scheme. Computed dimensionless velocity profiles are in good agreements with the experimental data in case of low drag reductions. However, in case of high drag reductions, they deviate largely from the measurements in the central zone of the flow field.

  • PDF

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings

  • Rahmani, Mohsen;Mohammadi, Younes;Kakavand, Farshad
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.239-252
    • /
    • 2019
  • Since conical sandwich shells are important structures in the modern industries, in this paper, for the first time, vibration behavior of the truncated conical sandwich shells which include temperature dependent porous FG face sheets and temperature dependent homogeneous core in various thermal conditions are investigated. A high order theory of sandwich shells which modified by considering the flexibility of the core and nonlinear von Karman strains are utilized. Power law rule which modified by considering the two types of porosity volume fractions are applied to model the functionally graded materials. By utilizing the Hamilton's energy principle, and considering the in-plane and thermal stresses in the face-sheets and the core, the governing equations are obtained. A Galerkin procedure is used to solve the equations in a simply supported boundary condition. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of this study, they are compared with FEM results obtained by Abaqus software and for special cases with the results in literatures. Eigen frequencies variations are surveyed versus the temperature changing, geometrical effects, porosity, and some others in the numerical examples.

Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme

  • Ebrahimi, Farzad;Dabbagh, Ali;Rabczuk, Timon;Tornabene, Francesco
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.135-143
    • /
    • 2019
  • The important effect of porosity on the mechanical behaviors of a continua makes it necessary to account for such an effect while analyzing a structure. motivated by this fact, a new two-step porosity dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) porous nanobeams. In the introduced homogenization method, which is a modified form of the power-law model, the effects of porosity distributions are considered. Based on Hamilton's principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adapted to put emphasis on the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Computational Study on the Performance of the Impeller in Centrifugal Pump (원심펌프 임펠러의 성능에 대한 전산해석적 연구)

  • Kim, Won-Kap;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.10-18
    • /
    • 2000
  • This paper reports the impeller performance of centrifugal pump, modified HES65-250. Developed CFD code uses SIMPLE algorithm, power-law scheme, standard $k-{\espilon}$ turbulence model in curvilinear coordinate system. The calculations are conducted for 5 cases, from 0.6 to 1.4 of flow rate ratio with 0.2 increment. The flow characteristics inside of impeller are analysed. The results show that reversal flows exist at the inlet of impeller which have small rotary stagnation pressure. The obtained results are compared with the experimental data at impeller exit and shows good qualitative agreement.

  • PDF