• Title/Summary/Keyword: Modification of the membrane

Search Result 278, Processing Time 0.023 seconds

Thiol-dependent Redox Mechanisms in the Modification of ATP-Sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Na-Ri;Cuong, Dang-Van;Kim, Chung-Hui;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • Cellular redox state is known to be perturbed during ischemia and that $Ca^{2+}$ and $K^2$ channels have been shown to have functional thiol groups. In this study, the properties of thiol redox modulation of the ATP-sensitive $K^2$ ($K_{ATP}$) channel were examined in rabbit ventricular myocytes. Rabbit ventricular myocytes were isolated using a Langendorff column for coronary perfusion and collagenase. Single-channel currents were measured in excised membrane patch configuration of patch-clamp technique. The thiol oxidizing agent 5,5'-dithio-bis-(2-nitro-benzoic acid) (DTNB) inhibited the channel activity, and the inhibitory effect of DTNB was reversed by dithiothreitol (disulfide reducing agent; DTT). DTT itself did not have any effect on the channel activity. However, in the patches excised from the metabolically compromised cells, DTT increased the channel activity. DTT had no effect on the inhibitory action by ATP, showing that thiol oxidation was not involved in the blocking mechanism of ATP. There were no statistical difference in the single channel conductance for the oxidized and reduced states of the channel. Analysis of the open and closed time distributions showed that DTNB had no effect on open and closed time distributions shorter than 4 ms. On the other hand, DTNB decreased the life time of bursts and increased the interburst interval. N-ethylmaleimide (NEM), a substance that reacts with thiol groups of cystein residues in proteins, induced irreversible closure of the channel. The thiol oxidizing agents (DTNB, NEM) inhibited of the $K_{ATP}$ channel only, when added to the cytoplasmic side. The results suggested that metabolism-induced changes in the thiol redox can also modulate $K_{ATP}$ channel activity and that a modulatory site of thiol redox may be located on the cytoplasmic side of the $K_{ATP}$ channel in rabbit ventricular myocytes.

Development of Numerical Technique to Analyze the Flow Characteristics of Porous Media Using Lattice Boltzmann Method (격자볼쯔만법을 이용한 다공체의 유동특성 분석방법 개발에 관한 연구)

  • Kim, Hyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.689-695
    • /
    • 2016
  • The performance of proton exchange membrane fuel cells (PEMFC) is strongly related to the water flow and accumulation in the gas diffusion layer (GDL) and catalyst layer. Understanding the behavior of fluid from the characteristics of the media is crucial for the improvement of the performance and design of the GDL. In this paper, a numerical method is proposed to calculate the design parameters of the GDL, i.e., permeability, tortuosity, and effective diffusivity. The fluid flow in a channel filled with randomly packed hard spheres is simulated to validate the method. The flow simulation was performed by lattice Boltzmann method with bounce back condition for the solid volume fraction in the porous media, with different values of porosities. Permeability, which affects the flow, was calculated from the average pressure drop and the velocity in the porous media. Tortuosity, calculated by the ratio the average path length of the randomly injected massless particles to the thickness of the porous media, and the resultant effective diffusivity were in good agreement with the theoretical model. The suggested method can be used to calculate the parameters of real GDL accurately without any modification.

A development of outdoor jackets for active senior males (액티브 시니어 남성을 위한 아웃도어 재킷 개발)

  • Kim, Ji-Eun;Kim, Eun-Kyong
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.2
    • /
    • pp.31-46
    • /
    • 2018
  • This study was carried out to offer basic data that can be used for outdoor wear production for active senior males, emerging as a new consumer bracket in the era of rapid aging. To this end, this study modified and complemented the patterns of outdoor jackets for active senior males based on existing outdoor jackets that received the most excellent evaluation. On the basis of the research outdoor wear wearing assessment results, this study confirmed those areas to be modified and proposed areas to be considered in manufacturing outdoor wear for this demographic. As a result of existing outdoor wear's wearing assessment, the jacket of brand B was shown to be the most excellent one. This study actually designed research outdoor wear patterns by modifying the problematic parts through the addition and subtraction of spare length or circumference in the sections where fit satisfaction was low by referring to the selected brands' patterns. The research outdoor wear was designed by referring to the preferred outdoor types and colors that were highlighted in the previous survey result of consumer wearing reality, based on the designs of the outdoor wear receiving the most excellent assessment in wearing assessment. Fabric that specially glued two-layered mesh that bonded the thin membrane of synthetic resin with polyester fabric was used as the material in this study. Wearing assessment was conducted by comparing the manufactured research outdoor wear and the existing outdoor wear selected as excellently assessed outdoor wear. Consequently, this study verified that the wearing fit of the research outdoor wear was more excellent in most items. This study proposed final patterns for outdoor jackets suitable for active senior males through the modification of several items that required improvements as per the wearing assessment of the research outdoor wear.

Improvement in Water Resistance of Desulfurized Gypsum by Novel Modification of Silicone Oil Paraffin Composite Emulsion-based Waterproofing Agent

  • Cao, Jing-Yu;Li, Jin-Peng;Jiang, Ya-Mei;Wang, Su-Lei;Ding, Yi;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.558-565
    • /
    • 2019
  • In this study, dimethyl silicone oil and liquid paraffin were combined and subsequently emulsified; the resulting mixture was innovatively incorporated into desulfurized gypsum to resolve its drawback of a poor water resistance. The waterproof mechanism of the composite emulsion and liquid paraffin emulsion with mass fractions of 1%, 2%, 3%, and 4% were investigated. The effect of the desulfurized gypsum on the waterproof performance and basic mechanical properties were also investigated. The configuration of the composite waterproofing agent was characterized by FTIR and 1HNMR. The results showed that, compared with the traditional liquid paraffin emulsion-based waterproofing agent, the softening coefficient of the silicone oil paraffin composite emulsion-based water-repellent agent was increased by 60% and attained a value of 0.89. Combined with the waterproof mechanism and microscope morphology analysis of gypsum hydration products, the improvement in the water resistance of water resistance was primarily attributed to the formation of a silicone hydrophobic membrane between the crystals of the gypsum block; this ensured that water could not penetrate the crystal.

Control of Molecular Weight, Stereochemistry and Higher Order Structure of Siloxane-containing Polymers and Their Functional Design

  • Yusuke Kawakami;Yuning Li;Yang Liu;Makoto Seino;Chitsakon Pakjamsai;Motoi Oishi;Cho, Yeong-Bee;Ichiro Imae
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.156-171
    • /
    • 2004
  • We describe the precision synthesis schemes of siloxane-containing polymers, i.e., the control of their molecular weight, stereoregularity, and higher-order structures. First, we found a new catalytic dehydrocoupling reaction of water with bis(dimethylsilyl)benzene to give poly(phenylene-disiloxane). Together with this reaction, we applied hetero-condensations to the synthesis of thermally stable poly(arylene-siloxane)s. The dehydrocoupling reaction was applied to the synthesis of syndiotactic poly(methylphenylsiloxane) and poly(silsesquioxane)s, which we also prepared by hydrolysis and deaminative condensation reactions. We discuss the tendency for loop formation to occur in the synthesis of poly(silsesquioxane) by hydrolysis, and provide comments on the design of functionality of the polymers produced. By taking advantage of the low energy barrier to rotation in the silicon-oxygen bond, we designed selective oxygen-permeable membrane materials and liquid crystalline materials. The low surface free energy of siloxane-containing systems allows surface modification of a blend film and the design of holographic grating materials.

Purification and Sidedness of Sarcolemma from Canine Ventricle (개 심실 형질막의 분리 및 그 방향성에 관한 연구)

  • 이신웅;구정옥;이정수
    • YAKHAK HOEJI
    • /
    • v.30 no.1
    • /
    • pp.31-41
    • /
    • 1986
  • Sarcolemmal membrane fraction from canine ventricle was isolated from the discarded pellet after the first homogenization in the isolation procedure of sarcoplasmic reticulum (Method 1) and the protein yield, purity, and sidedness of this preparation were compared to those of sarcolemmal fraction prepared by method of Lee et al. (Method 2) and a slight modification of original protocol of Jones et al. (Method 3). Method 1 differed from Method 2 essentially only in that vigorous homogenization was carried out by omnimixer and homogenization medium containing 30mM Tris-maleate was used in the first step. The sarcolemmal fraction was enriched from 45 to 50 and 29-fold in [$^3H$] ouabain, [$^3H$] DHA, [$^3H$] QNB binding and $Na^+$, $K^+$-ATPase activity, respectively, compared to homogenate. Total $Na^+$, $K^+$-ATPase activity of highly sarcolemma enriched fraction was 144.6$\pm$16.4$\mu\textrm{mol}$ Pi/mg protein/hr, which was about 85%, of total ATPase activity, and the yield of the preparation was 15.7 mg protein per 100g of starting ventricular tissue. The sarcolemmal preparation supported $^{45}Ca^{2+}$-uptake in the presence of ATP but this uptake was not dependent on oxalate. Sarcolemmal $Na^+$, $K^+$-ATPase activity and detectable [$^3H$] ouabain binding were increased about 32% and 35%, respectively, by pretreatment of sarcolemmal fraction with optimal concentration of sodium dodecylsulfate (0.3-0.4mg/mg protein), suggesting that this preparation contained about 24% of sealed rightside-out vesicles, 26% of sealed inside-out vesicles, and 5001o of freely permeable (leaky) form. This procedure showed the highest protein yield and leaky population, compared to Method 2 and 3. On the other hand, sarcolemmal fraction prepared by Method 2 and 3 showed low value in protein yield but comtained high population of inside-out (46%) and rightside-out (49%) vesicles, respectively, compared to present procedure (Method 1). The results indicate that vigorous homogenization decreases the population of sealed sarcolemmal vesicles but increases the sarcolemmal protein yield per gram tissue and that this procedure is available for further purification of sarcolemmal fraction and for the receptor binding study of sarcolemma.

  • PDF

Detachment of nanoparticles in granular media filtration

  • Kim, Ijung;Zhu, Tongren;Jeon, Chan-Hoo;Lawler, Desmond F.
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • An understanding of particle-particle interactions in filtration requires studying the detachment as well as the attachment of nanoparticles. Nanoparticles captured in a granular media filter can be released by changing the physicochemical factors. In this study, the detachment of captured silver nanoparticles (AgNPs) in granular media filtration was examined under different ionic strengths, ion type, and the presence or absence of natural organic matter (NOM). Filtration velocity and ionic strength were chosen as the physical and chemical factors to cause the detachment. Increasing filtration velocity caused a negligible amount of AgNP detachment. On the other hand, lowering ionic strength showed different release amounts depending on the background ions, implying a population of loosely captured particles inside the filter bed. Overall detachment was affected by ionic strength and ion type, and to a lesser degree by NOM coating which resulted in slightly more detachment (in otherwise identical conditions) than in the absence of that coating, possibly by steric effects. The secondary energy minimum with Na ions was deeper and wider than with Ca ions, probably due to the lack of complexation with citrate and charge neutralization that would be caused by Ca ions. This result implies that the change in chemical force by reducing ionic strength of Na ions could significantly enhance the detachment compared to that caused by a change in physical force, due to a weak electrostatic deposition between nanoparticles and filter media. A modification of the 1-D filtration model to incorporate a detachment term showed good agreement with experimental data; estimating the detachment coefficients for that model suggested that the detachment rate could be similar regardless of the amount of previously captured AgNPs.

Characterization of Protein Arginine Methyltransferases in Porcine Brain

  • Hung, Chien-Jen;Chen, Da-Huang;Shen, Yi-Ting;Li, Yi-Chen;Lin, Yi-Wei;Hsieh, Mingli;Li, Chuan
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.617-624
    • /
    • 2007
  • Protein arginine methylation is a posttranslational modification involved in various cellular functions including cell signaling, protein subcellular localization and transcriptional regulation. We analyze the protein arginine methyltransferases (PRMTs) that catalyze the formation of methylarginines in porcine brain. We fractionated the brain extracts and determined the PRMT activities as well as the distribution of different PRMT proteins in subcellular fractions of porcine brain. The majority of the type I methyltransferase activities that catalyze the formation of asymmetric dimethylarginines was in the cytosolic S3 fraction. High specific activity of the methyltransferase was detected in the S4 fraction (high-salt stripping of the ultracentrifugation precipitant P3 fraction), indicating that part of the PRMT was peripherally associated with membrane and ribosomal fractions. The amount and distribution of PRMT1 are consistent with the catalytic activity. The elution patterns from gel filtration and anion exchange chromatography also indicate that the type I activity in S3 and S4 are mostly from PRMT1. Our results suggest that part of the type I arginine methyltransferases in brains, mainly PRMT1, are sequestered in an inactive form as they associated with membranes or large subcellular complexes. Our biochemical analyses confirmed the complex distribution of different PRMTs and implicate their regulation and catalytic activities in brain.

Optimized phos-tag mobility shift assay for the detection of protein phosphorylation in planta

  • Hussain, Shah;Nguyen, Nhan Thi;Nguyen, Xuan Canh;Lim, Chae Oh;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.322-327
    • /
    • 2018
  • Post-translational modification of proteins regulates signaling cascades in eukaryotic system, including plants. Among these modifications, phosphorylation plays an important role in modulating the functional properties of proteins. Plants perceive environmental cues that directly affect the phosphorylation status of many target proteins. To determine the effect of environmentally induced phosphorylation in plants, in vivo methods must be developed. Various in vitro methods are available but, unlike in animals, there is no optimized methodology for detecting protein phosphorylation in planta. Therefore, in this study, a robust, and easy to handle Phos-Tag Mobility Shift Assay (PTMSA) is developed for the in vivo detection of protein phosphorylation in plants by empirical optimization of methods previously developed for animals. Initially, the detection of the phosphorylation status of target proteins using protocols directly adapted from animals failed. Therefore, we optimized the steps in the protocol, from protein migration to the transfer of proteins to PVDF membrane. Supplementing the electrophoresis running buffer with 5mM $NaHSO_3$ solved most of the problems in protein migration and transfer. The optimization of a fast and robust protocol that efficiently detects the phosphorylation status of plant proteins was successful. This protocol will be a valuable tool for plant scientists interested in the study of protein phosphorylation.

P2 Receptor-mediated Inhibition of Vasopressin-stimulated Fluid Transport and cAMP Responses in AQP2-transfected MDCK Cells

  • Kim, Yang-Hoo;Choi, Young-Jin;Bae, Hae-Rahn;Woo, Jae-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • We cultured canine kidney(MDCK) cells stably expressing aquaporin-2(AQP2) on collagen-coated permeable membrane filters and examined the effect of extracellular ATP on arginine vasopressin(AVP)-stimulated fluid transport and cAMP production. Exposure of cell monolayers to basolateral AVP resulted in stimulation of apical to basolateral net fluid transport driven by osmotic gradient which was formed by addition of 500 mM mannitol to basolateral bathing solution. Pre-exposure of the basolateral surface of cell monolayers to ATP(100 ${\mu}M$) for 30 min significantly inhibited the AVP-stimulated net fluid transport. In these cells, AVP-stimulated cAMP production was suppressed as well. Profile of the effects of different nucleotides suggested that the $P2Y_2$ receptor is involved in the action of ATP. ATP inhibited the effect of isoproterenol as well, but not that of forskolin to stimulate cAMP production. The inhibitory effect of ATP on AVP-stimulated fluid movement was attenuated by a protein kinase C inhibitor, calphostin C or pertussis toxin. These results suggest that prolonged activation of the P2 receptors inhibits AVP-stimulated fluid transport and cAMP responses in AQP2 transfected MDCK cells. Depressed responsiveness of the adenylyl cyclase by PKC-mediated modification of the pertussis-toxin sensitive $G_i$ protein seems to be the underlyihng mechanism.