DOI QR코드

DOI QR Code

Characterization of Protein Arginine Methyltransferases in Porcine Brain

  • Hung, Chien-Jen (Department of Biomedical Sciences, Chung Shan Medical University) ;
  • Chen, Da-Huang (Institute of Medicine, Chung Shan Medical University) ;
  • Shen, Yi-Ting (Department of Biomedical Sciences, Chung Shan Medical University) ;
  • Li, Yi-Chen (Department of Biomedical Sciences, Chung Shan Medical University) ;
  • Lin, Yi-Wei (Department of Biomedical Sciences, Chung Shan Medical University) ;
  • Hsieh, Mingli (Department of Biomedical Sciences, Chung Shan Medical University) ;
  • Li, Chuan (Department of Biomedical Sciences, Chung Shan Medical University)
  • Published : 2007.09.30

Abstract

Protein arginine methylation is a posttranslational modification involved in various cellular functions including cell signaling, protein subcellular localization and transcriptional regulation. We analyze the protein arginine methyltransferases (PRMTs) that catalyze the formation of methylarginines in porcine brain. We fractionated the brain extracts and determined the PRMT activities as well as the distribution of different PRMT proteins in subcellular fractions of porcine brain. The majority of the type I methyltransferase activities that catalyze the formation of asymmetric dimethylarginines was in the cytosolic S3 fraction. High specific activity of the methyltransferase was detected in the S4 fraction (high-salt stripping of the ultracentrifugation precipitant P3 fraction), indicating that part of the PRMT was peripherally associated with membrane and ribosomal fractions. The amount and distribution of PRMT1 are consistent with the catalytic activity. The elution patterns from gel filtration and anion exchange chromatography also indicate that the type I activity in S3 and S4 are mostly from PRMT1. Our results suggest that part of the type I arginine methyltransferases in brains, mainly PRMT1, are sequestered in an inactive form as they associated with membranes or large subcellular complexes. Our biochemical analyses confirmed the complex distribution of different PRMTs and implicate their regulation and catalytic activities in brain.

Keywords

References

  1. Abramovich, C., Yakobson, B., Chebath, J. and Revel, M. (1997) A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. Embo J. 16, 260-266. https://doi.org/10.1093/emboj/16.2.260
  2. Bachand, F. and Silver, P. A. (2004) PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits. Embo J. 23, 2641-2650. https://doi.org/10.1038/sj.emboj.7600265
  3. Bedford, M. T. and Richard, S. (2005) Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263-272. https://doi.org/10.1016/j.molcel.2005.04.003
  4. Boisvert, F. M., Chenard, C. A. and Richard, S. (2005) Protein interfaces in signaling regulated by arginine methylation. Sci STKE, re2.
  5. Branscombe, T. L., Frankel, A., Lee, J. H., Cook, J. R., Yang, Z., Pestka, S. and Clarke, S. (2001) PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276, 32971-32976. https://doi.org/10.1074/jbc.M105412200
  6. Chen, D., Ma, H., Hong, H., Koh, S. S., Huang, S. M., Schurter, B. T., Aswad, D. W. and Stallcup, M. R. (1999) Regulation of transcription by a protein methyltransferase. Science 284, 2174-2177. https://doi.org/10.1126/science.284.5423.2174
  7. Chevillard-Briet, M., Trouche, D. and Vandel, L. (2002) Control of CBP co-activating activity by arginine methylation. Embo J. 21, 5457-5466. https://doi.org/10.1093/emboj/cdf548
  8. Cook, J. R., Lee, J. H., Yang, Z. H., Krause, C. D., Herth, N., Hoffmann, R. and Pestka, S. (2006) FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues. Biochem. Biophys. Res. Commun. 342, 472-481. https://doi.org/10.1016/j.bbrc.2006.01.167
  9. Frankel, A., Yadav, N., Lee, J., Branscombe, T. L., Clarke, S. and Bedford, M. T. (2002) The novel human protein arginine Nmethyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem. 277, 3537-3543. https://doi.org/10.1074/jbc.M108786200
  10. Friesen, W. J., Paushkin, S., Wyce, A., Massenet, S., Pesiridis, G. S., Van Duyne, G., Rappsilber, J., Mann, M. and Dreyfuss, G. (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell. Biol. 21, 8289-8300. https://doi.org/10.1128/MCB.21.24.8289-8300.2001
  11. Gary, J. D. and Clarke, S. (1998) RNA and protein interactions modulated by protein arginine methylation. Prog. Nucleic Acid Res. Mol. Biol. 61, 65-131. https://doi.org/10.1016/S0079-6603(08)60825-9
  12. Ghosh, S. K., Paik, W. K. and Kim, S. (1988) Purification and molecular identification of two protein methylases I from calf brain. Myelin basic protein- and histone-specific enzyme. J. Biol. Chem. 263, 19024-19033.
  13. Herrmann, F., Bossert, M., Schwander, A., Akgun, E. and Fackelmayer, F. O. (2004) Arginine methylation of scaffold attachment factor A by heterogeneous nuclear ribonucleoprotein particle-associated PRMT1. J. Biol. Chem. 279, 48774-48779. https://doi.org/10.1074/jbc.M407332200
  14. Herrmann, F., Lee, J., Bedford, M. T. and Fackelmayer, F. O. (2005) Dynamics of human protein arginine methyltransferase 1(PRMT1) in vivo. J. Biol. Chem. 280, 38005-38010. https://doi.org/10.1074/jbc.M502458200
  15. Hung, C. M. and Li, C. (2004) Identification and phylogenetic analyses of the protein arginine methyltransferase gene family in fish and ascidians. Gene 340, 179-187. https://doi.org/10.1016/j.gene.2004.07.039
  16. Krause, C. D., Yang, Z. H., Kim, Y. S., Lee, J. H., Cook, J. R. and Pestka, S. (2007) Protein arginine methyltransferases: Evolution and assessment of their pharmacological and therapeutic potential. Pharmacol. Ther. 113, 50-87. https://doi.org/10.1016/j.pharmthera.2006.06.007
  17. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  18. Lee, J., Sayegh, J., Daniel, J., Clarke, S. and Bedford, M. T. (2005a) PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J. Biol. Chem. 280, 32890-32896. https://doi.org/10.1074/jbc.M506944200
  19. Lee, J. H., Cook, J. R., Yang, Z. H., Mirochnitchenko, O., Gunderson, S. I., Felix, A. M., Herth, N., Hoffmann, R. and Pestka, S. (2005b) PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J. Biol. Chem. 280, 3656-3664. https://doi.org/10.1074/jbc.M405295200
  20. Lim, Y., Kwon, Y. H., Won, N. H., Min, B. H., Park, I. S., Paik, W. K. and Kim, S. (2005) Multimerization of expressed protein-arginine methyltransferases during the growth and differentiation of rat liver. Biochim. Biophys. Acta 1723, 240-247. https://doi.org/10.1016/j.bbagen.2005.02.015
  21. Lin, W. J., Gary, J. D., Yang, M. C., Clarke, S. and Herschman, H. R. (1996) The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem. 271, 15034-15044. https://doi.org/10.1074/jbc.271.25.15034
  22. Meister, G., Eggert, C., Buhler, D., Brahms, H., Kambach, C. and Fischer, U. (2001) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol. 11, 1990-1994. https://doi.org/10.1016/S0960-9822(01)00592-9
  23. Pahlich, S., Zakaryan, R. P. and Gehring, H. (2006) Protein arginine methylation: Cellular functions and methods of analysis. Biochim. Biophys. Acta 1764, 1890-1903. https://doi.org/10.1016/j.bbapap.2006.08.008
  24. Pawlak, M. R., Scherer, C. A., Chen, J., Roshon, M. J. and Ruley, H. E. (2000) Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol. Cell. Biol. 20, 4859-4869. https://doi.org/10.1128/MCB.20.13.4859-4869.2000
  25. Pearson, D. L., Reimonenq, R. D. and Pollard, K. M. (1999) Expression and purification of recombinant mouse fibrillarin. Protein Expr. Purif. 17, 49-56. https://doi.org/10.1006/prep.1999.1099
  26. Rawal, N., Rajpurohit, R., Paik, W. K. and Kim, S. (1994) Purification and characterization of S-adenosylmethionine-protein-arginine N-methyltransferase from rat liver. Biochem. J. 300, 483-489. https://doi.org/10.1042/bj3000483
  27. Rho, J., Choi, S., Seong, Y. R., Cho, W. K., Kim, S. H. and Im, D. S. (2001) Prmt5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J. Biol. Chem. 276, 11393-11401. https://doi.org/10.1074/jbc.M008660200
  28. Singh, V., Miranda, T. B., Jiang, W., Frankel, A., Roemer, M. E., Robb, V. A., Gutmann, D. H., Herschman, H. R., Clarke, S. and Newsham, I. F. (2004) DAL-1/4.1B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo. Oncogene 23, 7761-7771. https://doi.org/10.1038/sj.onc.1208057
  29. Swiercz, R., Person, M. D. and Bedford, M. T. (2004) Ribosomal protein S2 is a substrate for mammalian protein arginine methyltransferase 3 (PRMT3). Biochem J. 386, 85-91.
  30. Tang, J., Frankel, A., Cook, R J., Kim, S., Paik, W. K., Williams, K. R., Clarke, S. and Herschman, H. R. (2000) PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J. Biol. Chem. 275, 7723-7730. https://doi.org/10.1074/jbc.275.11.7723
  31. Tang, J., Gary, J. D., Clarke, S. and Herschman, H. R. (1998) PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J. Biol. Chem. 273, 16935-16945. https://doi.org/10.1074/jbc.273.27.16935
  32. Xu, W., Chen, H., Du, K., Asahara, H., Tini, M., Emerson, B. M., Montminy, M. and Evans, R. M. (2001) A transcriptional switch mediated by cofactor methylation. Science 294, 2507-2511. https://doi.org/10.1126/science.1065961
  33. Yanagida, M., Hayano, T., Yamauchi, Y., Shinkawa, T., Natsume, T., Isobe, T. and Takahashi, N. (2004) Human fibrillarin forms a sub-complex with splicing factor 2-associated p32, protein arginine methyltransferases, and tubulins alpha 3 and beta 1 that is independent of its association with preribosomal ribonucleoprotein complexes. J. Biol. Chem. 279, 1607-1614. https://doi.org/10.1074/jbc.M305604200
  34. Zhang, X. and Cheng, X. (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure (Camb), 11, 509-520. https://doi.org/10.1016/S0969-2126(03)00071-6
  35. Zhang, X., Zhou, L. and Cheng, X. (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. Embo J. 19, 3509-3519. https://doi.org/10.1093/emboj/19.14.3509

Cited by

  1. Protein Arginine Methylation in Mammals: Who, What, and Why vol.33, pp.1, 2009, https://doi.org/10.1016/j.molcel.2008.12.013
  2. The predominant protein arginine methyltransferase PRMT1 is critical for zebrafish convergence and extension during gastrulation vol.278, pp.6, 2011, https://doi.org/10.1111/j.1742-4658.2011.08006.x
  3. Proteomic Analysis of Methylarginine-Containing Proteins in HeLa Cells by Two-Dimensional Gel Electrophoresis and Immunoblotting with a Methylarginine-Specific Antibody vol.28, pp.3-4, 2009, https://doi.org/10.1007/s10930-009-9174-3