• 제목/요약/키워드: Modeling of Physical Phenomena

검색결과 90건 처리시간 0.028초

Hydrodynamic Modeling for Discharge Analysis in a Dielectric Medium with the Finite Element Method under Lightning Impulse

  • Lee, Ho-Young;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.397-401
    • /
    • 2011
  • The response of lightning impulse voltage was explored in dielectric liquids employing hydrodynamic modeling with three charge carriers using the finite element method. To understand the physical behavior of discharge phenomena in dielectric liquids, the response of step voltage has been extensively studied recently using numerical techniques. That of lightning impulse voltage, however, has rarely been investigated in technical literature. Therefore, in this paper, we tested impulse response with a tip-sphere electrode which is explained in IEC standard #60897 in detail. Electric field-dependent molecular ionization is a common term for the breakdown process, so two ionization factors were tested and compared for selecting a suitable coefficient with the lightning impulse voltage. To stabilize our numerical setup, the artificial diffusion technique was adopted, and finer mesh segmentation was generated along with the axial axis. We found that the velocity from the numerical result agrees with that from the experimental result on lightning impulse breakdown testing in the literature.

전산유체역학을 위한 공동모델의 특성 조사 (Investigation for the Characteristics of Cavitation Modeling for Computational Fluid Dynamics)

  • 박선호;이신형
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.657-669
    • /
    • 2010
  • Cavitation is one of the most difficult physical phenomena to understand and predict. Many experimental and computational studies have been conducted for better understanding of the phenomenon. Recently, with the rapid development of computing hardware capacity and numerical methods, considerable advancement is observed in prediction of cavitation using computational fluid dynamics. To that end, many cavitation models have been developed and reported. In the present paper, some of the distinguished cavitation models are categorized and reviewed in terms of the computational frame work and formulation of transport equations. Then those characteristics are compared with each other.

우주 환경에서 GHTAW 아크 특성과 용융지 해석에 관한 연구 (A Study on the Arc Characteristics and Weld Pool Analysis of GHTAW under the Space Environment)

  • 이상훈;나석주
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.67-72
    • /
    • 2010
  • The purpose of this paper is to understand the behavior of GHTAW process under the space environment with the experimental and numerical analysis. Gas Hollow Tungsten Arc Welding (GHTAW) using a hollow tungsten electrode was adopted, since the ignition and discharge of a conventional GTAW process is not appropriate to the space environment due to low pressure in space. In order to clarify the phenomena of GHTAW under space environment, an investigation of thermal and physical properties of the GHTAW arc plasma was experimentally performed under low pressure conditions. Furthermore, the molten pool behavior and weldment of GHTAW were understood by CFD-based numerical analysis, based on the models of GHTA heat source, arc pressure and electromagnetic force induced by arc plasma, the characteristics of which were obtained by the captured images of a CCD camera.

고체 면에 흡착된 박막에서의 분리압력 특성에 관한 연구 (Disjoining Pressures of Nanoscale Thin Films on Solid Substrate)

  • 한민섭
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.101-106
    • /
    • 2009
  • The disjoining pressure is an important physical property in modeling the small-scale transport phenomena on thin film. It is a very useful definition in characterizing the non-continuum effects that are not negligible in heat and mass transport of the film thinner than submicro-scales. We present the calculated values of disjoining pressure of He, Kr and Xe thin films absorbed on graphite substrate using Molecular Dynamics Simulation (MD). The disjoining pressure is accurately calculated in the resolution of a molecular scale of the film thickness. The characteristics of the pressure are discussed regarding the molecular nature of the fluid system such as molecular diameter and intermolecular interaction parameters. The MD results are also compared with those based on the continuum approximation of the slab-like density profile and the results on other novel gases in the previous study. The discrepancies of the continuum model with MD results are shown in all three configurations and discussed in the view point of molecular features.

Numerical modelling of the damaging behaviour of the reinforced concrete structures by multi-layers beams elements

  • Mourad, Khebizi;mohamed, Guenfoud
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.547-562
    • /
    • 2015
  • A two-dimensional multi-layered finite elements modeling of reinforced concrete structures at non-linear behaviour under monotonic and cyclical loading is presented. The non-linearity material is characterized by several phenomena such as: the physical non-linearity of the concrete and steels materials, the behaviour of cracked concrete and the interaction effect between materials represented by the post-cracking filled. These parameters are taken into consideration in this paper to examine the response of the reinforced concrete structures at the non-linear behaviour. Four examples of application are presented. The numerical results obtained, are in a very good agreement with available experimental data and other numerical models of the literature.

Electric Arc furnaces: Chaotic Load Models and Transient Analysis

  • Jang, Gil-Soo;Venkata, S.S.;Kwon, Sae-Hyuk
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.923-925
    • /
    • 1998
  • Electric arc furnaces (EAFs) are a main cause of voltage flicker due to the interaction of the high demand currents of the load with the supply system impedance. The stochastic models have described the physical phenomena of EAFs. An alternative approach is to include deterministic chaos in the characterization of the arc currents. In this paper, a chaotic approach to such modeling is described and justified. At the same time, a DLL (Dynamic Link Library) module, which is a FORTRAN interface with TACS (Transient Analysis of Control Systems), is developed to implement the chaotic load model in the Electromagnetic Transients Program (EMTP). The details of the module and the results of tests performed on the module to verify the model and to illustrate its capabilities are presented in this paper.

  • PDF

고형 폐기물층 연소에 관한 연구 (A study on the bed combustion of solid waste)

  • 신동훈;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.1-8
    • /
    • 1998
  • Waste combustion above a grate is the core process of incineration systems, stability of which should be guaranteed for emission minimization. However, complicated reactions and heat and mass transfer phenomena make understanding the process difficult. One dimensional bed combustor with a numerical combustion model is utilized to investigate the combustion process of the bed, using cubic wood particles as a simulated fuel. Bed combustion behavior is characterized with apparent flame propagation speed, which has close relationship with air supply rate and chemical and physical characteristics of the fuel. Base on the availability of oxygen, two distinct reaction zone is identified; the oxygen-limited and the reaction-limited zone leading to the extinction by excessive convection cooling. The numerical modeling shows good agreement with the experimental results. The transient bed combustion behavior of local temperature and oxygen consumption rate is adequately reproduced. The numerical model is extended to model the waste bed combustion of a commercial incineration plant, which shows meaningful results as well.

  • PDF

Numerical Modeling of Charge Transport in Polymer Materials Under DC Continuous Electrical Stress

  • Hamed, Boukhari;Fatiha, Rogti
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.107-111
    • /
    • 2015
  • Our work is based on the development of a numerical model to develop a methodology for predicting the aging and breakdown in insulation due to the dynamics of space charge packets. The model of bipolar charge transports is proposed to simulate space charge dynamic for high DC voltage in law-density polyethylene (LDPE), taking into account the trapping and detrapping of recombination phenomena, this model has been developed and experimentally validation. Theoretical formulation of the physical problem is based on the Poisson, the continuity and the transport equations as well as on the appropriate models for injection. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges, conduction and displacement current densities, and the external current.

이온빔을 이용한 마이크로/나노 가공: 모델링 (Ion Beam Induced Micro/Nano Fabrication: Modeling)

  • 김흥배
    • 한국정밀공학회지
    • /
    • 제24권8호통권197호
    • /
    • pp.108-115
    • /
    • 2007
  • 3D nano-scale manufacturing is an important aspect of advanced manufacturing technology. A key element in ability to view, fabricate, and in some cases operate micro-devices is the availability of tightly focused particle beams, particularly of photons, electrons, and ions. The use of ions is the only way to fabricate directly micro-/ nano-scale structures. It has been utilized as a direct-write method for lithography, implantation, and milling of functional devices. The simulation of ion beam induced physical and chemical phenomena based on sound mathematical models associated with simulation methods is presented for 3D micro-/nanofabrication. The results obtained from experimental investigation and characteristics of ion beam induced direct fabrication will be discussed.

트라이 베리에이트 산포된 자료 보간의 가시화 (Visualization of Trivariate Scattered Data Interpolation)

  • 이건
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제2권2호
    • /
    • pp.11-20
    • /
    • 1996
  • 산포된 자료 보간을 응용하는 분야에는 모델링, 자연현상 가시화 등을 비롯하여 여러 가지를 들 수 있다. 사면체 분할은 사차원적 공간 형성을 위한 전 처리 단계 중의 하나이다. 본 논문은 다양한 사면체 분할법인, Delaunay, least squares fitting, gradient difference, 와 jump in normal direction derivatives 들을 논의하였다. 본 논문은 사면체 영역을 가시화 함으로써, 사면체 분할법들을 구별시키고, 사면체 영역을 바탕으로 보간된 공간상의 등사치를 수치적 뿐만 아니라 시각적으로 가시화 하여 그 정확도를 비교 분석할 수 있는 방법을 제시하였다.

  • PDF