• Title/Summary/Keyword: Modeling and simulation technique

Search Result 588, Processing Time 0.025 seconds

Simulation Methodology for Automation of Port Systems : Example of Container Terminal (항만 시스템의 자동화를 위한 시뮬레이션 방법론 : 컨테이너 터미널의 예)

  • Lee, Jang-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.154-162
    • /
    • 2010
  • A simulation technique is very useful method to analyze the performance on various engineering area. To automate port systems, we have need of simulation to analyze an effect of assigning and operating devices. Thus we propose simulation methodology to be applied to an analysis, evaluation, planning for port automation. To do this, we have adopted the discrete event system specification based system entity structure / model base framework for modeling and simulation environment. We have performed modeling and simulation on entities of port systems such as container crane, yard tractor, transfer crane, etc. The proposed methodology has an advantage being able to effectively simulate on alternatives of composition and operation strategy for port systems. Some case studies will show the validity of proposed simulation methodology.

An Analytical Modeling and Simulation of Dual Material Double Gate Tunnel Field Effect Transistor for Low Power Applications

  • Arun Samuel, T.S.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.247-253
    • /
    • 2014
  • In this paper, a new two dimensional (2D) analytical modeling and simulation for a Dual Material Double Gate tunnel field effect transistor (DMDG TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunnelling generation rate and thus we numerically extract the tunnelling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.

A Study on Geostatistical Simulation Technique for the Uncertainty Modeling of RMR (RMR의 불확실성 모델링을 위한 지구통계학적 시뮬레이션 기법에 관한 연구)

  • 류동우;김택곤;허종석
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.87-99
    • /
    • 2003
  • Geostatistics is defined as the theory of modeling of regionalized variables and is an efficient and elegant methodology for estimation and uncertainty evaluation from limited spatial sample data. In this study, we have made a theoretical comparison between kriging estimation and geostatistical simulation methods. Kriging methods do not preserve the histogram of original data nor their spatial structure, and also provide only an incomplete measure of uncertainty when compared to the simulation methods. A practical procedure of geostatistical simulation is suggested in this study and the technique is demonstrated through an application, in which it was used to identify the spatial distribution of RMR as well as to evaluate the spatial uncertainty. It is concluded that the geostatistical simulation is the appropriate method to quantify the spatial uncertainty of geotechnical variables such as RMA. Therefore, the results from the simulation can be used as useful information for designer's considerations in decision-making under various geological conditions as well as the related terms of contract.

Development of Modeling Technique and Material Prediction Method Considering Structural Characteristics of Woven Composites (직조 복합재료의 구조적 특성을 고려한 모델링 기법 및 물성 예측 기법 개발)

  • Choi, Kyung-Hee;Hwang, Yeon-Taek;Kim, Hee-June;Kim, Hak-Sung
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.206-210
    • /
    • 2019
  • As the use of composite materials of woven structure has expanded to various fields such as automobile and aviation industry, there has been a need for reliability problems and prediction of mechanical properties of woven composites. In this study, finite element analysis for predicting the mechanical properties of composite materials with different weaving structures was conducted to verify similarity with experimental static properties and an effective modeling method was developed. To reflect the characteristics of the weave structure, the meso-scale representative volume element (RVE) was used in modeling. Three-dimensional modeling was carried out by separating the yarn and the pure matrix. Hashin's failure criterion was used to determine whether the element was failed, and the simulation model used a progressive failure model which was suitable for the composite material. Finally, the accordance of the modeling and simulation technique was verified by successfully predicting the mechanical properties of the composite material according to the weave structure.

Worker utilization and productivity analysis using a 3D modeling technique (3D 모델링 기법을 이용한 작업자효율 및 생산성 분석)

  • 윤영수;양승렬;이수철;서승록
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.37-46
    • /
    • 2000
  • In this paper, we developed a simulation model of a car parts assembly line to improve the system performance such as worker's utilization balancing, productivity. This simulation model has been developed using QUEST, a true 3D discrete event simulation pakcage that is designed for modeling and analysis of manufacturing systems. We have suggested the results obtained to improve the system performances of an existing production line.

  • PDF

Study on Simulation of Subsea Production System (Subsea 생산 시스템 시뮬레이션에 관한 연구)

  • Park, Ju Yong;Jo, Hyo Jae;Lee, Seung Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The purpose of this study was the implementation of a simulation for a subsea production system. This subsea production system is installed under environments with high pressure and low temperature. Most of the processes for oil and gas production occur in the subsea equipment. Therefore, an understanding and study of subsea production systems is very difficult because people cannot directly observe the processes occurring in the subsea production system. A simulation system can be a useful solution for this difficult problem. In this research, information models and a 3-D graphic model of the subsea equipment were built using the object-oriented technology and 3-D CAD. The entire system was implemented with the help of simulation software, 3-DVIA Virtools. The simulation system for the subsea production system was tested using several production process scenarios. The results of the tests showed that the simulation system is very useful for understanding a subsea production system and could be a good educational tool.

Railway Facilities and Train Movement Modeling by Object Oriented Concept (객체지향기법에 의한 철도선로 및 열차운행 모델링)

  • Choi, Kyu-Hyoung;Gu, Se-Wan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.393-395
    • /
    • 1998
  • This paper presents a modeling of railway facilities based on object-oriented software development technique for train operation simulation program. Railway network is decomposed by Line Structure Model and Signal System Model which can be composed to make the train routes and train performance calculation. A brief explanation of class design about these model is provided.

  • PDF

The Development of Torpedo Defense Experimental Technique based on M&S (M&S 기반 어뢰방어전 모의실험 기술 구현)

  • Nah, Young-In;Lee, Sim-Yong;Yoon, Han-Saem
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.818-823
    • /
    • 2010
  • Exploiting models and simulations are encouraged among the defense acquisition society, as now enforced by the Defense Aquisition Program Administration's regulations. They are useful and, sometimes, inevitable especially in an earlier phase of system development. Computer-simulation-based experimentation technique for the system operational performance analysis for a torpedo defense system is introduced in this paper. Problem definition for the torpedo defense system analysis and engineering efforts for models and simulations development are presented here, including defining measures of performance and effectiveness for the torpedo defense system, conceptual modeling for torpedo engagement and defense simulation, design of experimentation, design of simulator and experimentor, and hardware and software implementation of an analysis support tool - a system operations demonstration and experimentation simulator.

The Implementation of Drilling Simulation for Offshore Rig Education (교육용 해양플랜트 Rig 굴착 시뮬레이션 구현)

  • Park, Ju-Yong;Jo, Hyo-Jae;Lee, Jee-Hoon;Lim, Young-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.11-17
    • /
    • 2011
  • The purpose of this study is 3 dimensional modeling of lower part of drilling system in offshore rig and simulation of drilling process. Recently, shipbuilding companies have been focusing on offshore rigs due to their high added-value and the reduced demand of new shipbuilding. In most cases, however, the basic design, installation and management of offshore rig are carried out by foreign companies. Therefore, it is difficult to obtain the knowledge and information of drilling system. In this study drilling devices, BOP(Blowout Preventor) and cementing job and mud circulation related components are included as the main components of offshore rig. The structure and function of them were analyzed from a viewpoint of object-oriented technique. On the basis of this analysis they were modeled in the 3 dimensional structure with 3D software tool such as CATIA and 3DVIA Composer. The drilling process was simulated according to the scenario of drilling operation. This simulation system can be effectively used for an educational tool for students and engineers in ocean plant industries.

Development of Artificial Neural Network Model for Simulating the Flow Behavior in Open Channel Infested by Submerged Aquatic Weeds

  • Abdeen Mostafa A. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1576-1589
    • /
    • 2006
  • Most of surface water ways in Egypt suffer from the infestation of aquatic weeds especially submerged ones which cause lots of problems for the open channels and the water structures such as increasing water losses, obstructing the water flow, and reducing the efficiency of the water structures. Accurate simulation of the water flow behavior in such channels is very essential for water distribution decision makers. Artificial Neural Network (ANN) has been widely utilized in the past ten years in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of the existence of submerged aquatic weeds on the hydraulic performance of open channels. Specifically the current paper investigates utilizing the ANN technique in developing a simulation and prediction model for the flow behavior in an open channel experiment that simulates the existence of submerged weeds as branched flexible elements. This experiment was considered as an example for implementing the same methodology and technique in a real open channel system. The results of current manuscript showed that ANN technique was very successful in simulating the flow behavior of the pre-mentioned open channel experiment with the existence of the submerged weeds. In addition, the developed ANN models were capable of predicting the open channel flow behavior in all the submerged weeds' cases that were considered in the ANN development process.