• Title/Summary/Keyword: Modeling and simulation technique

Search Result 588, Processing Time 0.022 seconds

SOC Observer based on Piecewise Linear Modeling for Lithium-Polymer Battery (구간선형 모델링 기반의 리튬-폴리머 배터리 SOC 관측기)

  • Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.344-350
    • /
    • 2015
  • A battery management system requires accurate information on the battery state of charge (SOC) to achieve efficient energy management of electric vehicle and renewable energy systems. Although correct SOC estimation is difficult because of the changes in the electrical characteristics of the battery attributed to ambient temperature, service life, and operating point, various methods for accurate SOC estimation have been reported. On the basis of piecewise linear (PWL) modeling technique, this paper proposes a simple SOC observer for lithium-polymer batteries. For performance evaluation, the SOC estimated by the PWL SOC observer, the SOC measured by the battery-discharging experiment and the SOC estimated by the extended Kalman filter (EKF) estimator were compared through a PSIM simulation study.

Analytical and experimental exploration of sobol sequence based DoE for response estimation through hybrid simulation and polynomial chaos expansion

  • Rui Zhang;Chengyu Yang;Hetao Hou;Karlel Cornejo;Cheng Chen
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • Hybrid simulation (HS) has attracted community attention in recent years as an efficient and effective experimental technique for structural performance evaluation in size-limited laboratories. Traditional hybrid simulations usually take deterministic properties for their numerical substructures therefore could not account for inherent uncertainties within the engineering structures to provide probabilistic performance assessment. Reliable structural performance evaluation, therefore, calls for stochastic hybrid simulation (SHS) to explicitly account for substructure uncertainties. The experimental design of SHS is explored in this study to account for uncertainties within analytical substructures. Both computational simulation and laboratory experiments are conducted to evaluate the pseudo-random Sobol sequence for the experimental design of SHS. Meta-modeling through polynomial chaos expansion (PCE) is established from a computational simulation of a nonlinear single-degree-of-freedom (SDOF) structure to evaluate the influence of nonlinear behavior and ground motions uncertainties. A series of hybrid simulations are further conducted in the laboratory to validate the findings from computational analysis. It is shown that the Sobol sequence provides a good starting point for the experimental design of stochastic hybrid simulation. However, nonlinear structural behavior involving stiffness and strength degradation could significantly increase the number of hybrid simulations to acquire accurate statistical estimation for the structural response of interests. Compared with the statistical moments calculated directly from hybrid simulations in the laboratory, the meta-model through PCE gives more accurate estimation, therefore, providing a more effective way for uncertainty quantification.

A Study on the Core Equivalent Stiffness Modeling Technique for FSI Analysis of High-Rise Buildings Under Wind Load (풍하중을 받는 초고층건물의 FSI 해석을 위한 코어 삽입 등가 강성 모델링 기법에 관한 연구)

  • Oh, Kang-Hwan;Jeon, Doo-jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.65-73
    • /
    • 2017
  • Recently, the trend is emerging a variety of irregular tall buildings. It is important to design the building for lateral load according to this trend. Fluid Structure Interaction(FSI) simulation can be performed to understand the vibrations of the structure against dynamic wind loads. In order to make the physical characteristics of the actual structure and the analytical model the same, we studied core inserting equivalent stiffness modeling method. As a result of this analysis, the stiffness of the structure can be set similar to that of the two axes of the structure, and turbulence can be reproduced through the acceleration tendency.

Multi-UAV Mission Allocation and Optimization Technique Based on Discrete-Event Modeling and Simulation (이산 사건 모델링 및 시뮬레이션 기반의 다수 무인기 임무 할당 및 최적화 기법)

  • Lee, Dong Ho;Jang, Hwanchol;Kim, Sang-Hwan;Chang, Woohyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this paper, we propose a heterogenous mission allocation technique for multi-UAV system based on discrete event modeling. We model a series of heterogenous mission creation, mission allocation, UAV departure, mission completion, and UAV maintenance and repair process as a mathematical discrete event model. Based on the proposed model, we then optimize the number of UAVs required to operate in a given scenario. To validate the optimized number of UAVs, the simulations are executed repeatedly, and their results are analyzed. The proposed mission allocation technique can be used to efficiently utilize limited UAV resources, and allow the human operator to establish an optimal mission plan.

An Analysis of Thermal Conductivity of Ceramic Fibrous Insulator by Modeling & Simulation Method I (모델링/시뮬레이션 기법을 이용한 세라믹 섬유 단열재의 열전도도 해석 I)

  • Kang, Hyung;Baek, Yong-Kee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.83-95
    • /
    • 2002
  • Thermal conductivity of ceramic fibrous insulator was analysed and predicted by using the modeling/simulation technique. Ceramic fibrous insulators are widely used as high temperature insulator on account of their lightweight mass and heat resisting properties. Especially it is suitable to protect the high speed aircraft and missiles from severe aero-thermodynamic heating. Thermal conductivity of ceramic fibrous insulator could be determined from the conductive heat transfer and the radiative heat transfer through the insulator. In order to estimate conductive thermal conductivity, homogenization technique was applied, while radiative thermal conductivity was computed by means of random number and radiation probability. Particularly radiation probability can make it possible to estimate the conductivity of fibrous insulator without any experimental constant. The calculated conductivity predicted in the present study have a reasonable accuracy with an average error of 7 percent to experimental data.

Development of a Graphical Modeler for Manipulating Series Data Based on Object-Oriented Technique (일련 자료 처리를 위한 시각적 객체 기반 모델러 개발)

  • Kim, Tae-Gon;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.2
    • /
    • pp.43-49
    • /
    • 2009
  • Many researcher uses simulation techniques for understanding the phenomenon and expecting the response. Simulation techniques have many advantages which is less time-consuming, easy to control constraints, and cheaper than experimental study. However Researches usually are not good at programming the model, it's hard to implement simulation model using computer language. They use spreadsheet program like Microsoft $excel^{TM}$ Although a spreadsheet program is good for modeling, it's cumbersome to describe expressions which consist of not variable name but location indicator. This study suggests the program which helps researcher developing model using graphical interface and variable name. For verifying usability, the model which is implemented by developed modeler were compared with by spreadsheet program.

Stabilized Control of Inverted Pendulum System by ANFIS

  • Lee, Joon-Tark;Lee, Oh-Keol;Shim, Young-Zin;Chung, Hyeng-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.691-695
    • /
    • 1998
  • Most of systems has nonlinearity . And also accurate modelings of these uncertain nonlinear systems are very difficult. In this paper, a fuzzy modeling technique for the stabilization control of an IP(inverted pendulum) system with nonlinearity was proposed. The fuzzy modeling was acquired on the basis of ANFIS(Adaptive Neuro Fuzzy Infernce System) which could learn using a series of input-output data pairs. Simulation results showed its superiority to the PID controller. We believe that its applicability can be extended to the other nonlinear systems.

  • PDF

Neural-based Blind Modeling of Mini-mill ASC Crown

  • Lee, Gang-Hwa;Lee, Dong-Il;Lee, Seung-Joon;Lee, Suk-Gyu;Kim, Shin-Il;Park, Hae-Doo;Park, Seung-Gap
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.577-582
    • /
    • 2002
  • Neural network can be trained to approximate an arbitrary nonlinear function of multivariate data like the mini-mill crown values in Automatic Shape Control. The trained weights of neural network can evaluate or generalize the process data outside the training vectors. Sometimes, the blind modeling of the process data is necessary to compare with the scattered analytical model of mini-mill process in isolated electro-mechanical forms. To come up with a viable model, we propose the blind neural-based range-division domain-clustering piecewise-linear modeling scheme. The basic ideas are: 1) dividing the range of target data, 2) clustering the corresponding input space vectors, 3)training the neural network with clustered prototypes to smooth out the convergence and 4) solving the resulting matrix equations with a pseudo-inverse to alleviate the ill-conditioning problem. The simulation results support the effectiveness of the proposed scheme and it opens a new way to the data analysis technique. By the comparison with the statistical regression, it is evident that the proposed scheme obtains better modeling error uniformity and reduces the magnitudes of errors considerably. Approximatly 10-fold better performance results.

Simulating Arsenic Concentration Changes in Small Agricultrual Reservoir Using EFDC-WASP Linkage Model (EFDC-WASP 연계모형을 이용한 소규모 농업용 저수지 비소 농도 모의)

  • Hwang, Soonho;Shin, Sat Byeol;Song, Jung-Hun;Yoon, Kwang Sik;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.29-40
    • /
    • 2018
  • Even if a small amount of arsenic (As) is entering to small agricultural reservoir from upper streams, small agricultural reservoir becomes sensitive to changes in arsenic concentration depending on the water level in case of accumulation continuously because of its scale. If we want to manage arsenic concentration in small agricultural reservoir, it is very important to understand arsenic changes in agricultural reservoir. In spite of the fact that modeling is the most accurate method for analyzing arsenic concentration changes in small agricultural reservoirs, but, it is difficult to monitor arsenic change everyday. So, if data is prepared for modeling arsenic changes, water quality modeling is more effective than monitoring. Therefore, in this study, arsenic concentration changes was simulated and arsenic concentration change mechanism in small reservoir was analyzed using hydrological and water quality monitoring data and by conducting EFDC (Environment Fluid Dynamics Code)-WASP (Water Quality Analysis Simulation Program) linkage. EFDC-WASP coupling technique was very useful for modeling arsenic changes because EFDC can consider hydrodynamic and WASP can perform arsenic concentration simulation, separately. As a results of this study, during dry season, As concentration was maintained relatively high arsenic concentrations. Therefore, water level control will be needed for managing As concentration of reservoir.

A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane (수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구)

  • Kim, Jongdae;Oh, Seokhyung;Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF