• Title/Summary/Keyword: Modeling and simulation technique

Search Result 585, Processing Time 0.029 seconds

Modeling of Non-linear Leaf Spring for Commercial Vehicle (상용차량의 비선형 Hotchkiss 스프링 모델링)

  • 유승환;김영배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A Hotchkiss spring has been widely utilized for commercial vehicle. Usually, the Hotchkiss spring has non-linear characteristics, i.e. it has a piecewise spring stiffness as well as hysterisis phenomenon. Therefore, the modeling of the Hotchkiss spring requires many considerations to fulfill satisfactory vehicle kinematic and dynamic relationships. Also, the spring has difficulties in modeling for presenting contact mechanism. In this paper, the modeling technique for the Hotchkiss spring has been descried. The modeling covers non-linear characteristics as well as contact problems for multi-body dynamic simulation. The force-displacement results are compared with experimental and FEM ones. Also, the comparison between three link type leaf spring model and proposed one has been considered in this paper.

A Study on PRML Method for the High Speed DVD System (고배속 DVD 시스템을 위한 PRML 기법에 관한 연구)

  • 이재욱;정병국
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.336-339
    • /
    • 1999
  • In this paper, we describe the accommodation of the PRML technique for the high speed and high density optical disk systems, which has been very effective in the high density HDD systems. To make the PRML technique adequate for the optical disk systems, the channel modeling and the simulation are performed. Finally, the architecture has been designed and realized into an ASIC. We have focused on the differences of PRML architecture between the HDD system and the optical disk system, and the digital realization of the PLL which has been realized with analog circuits.

  • PDF

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

The Development of Converting Program from Sealed Geological Model to Gmsh, COMSOL for Building Simulation Grid (시뮬레이션 격자구조 제작을 위한 Mesh 기반 지질솔리드모델의 Gmsh, COMSOL 변환 프로그램 개발)

  • Lee, Chang Won;Cho, Seong-Jun
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.80-90
    • /
    • 2017
  • To build tetrahedra mesh for FEM numerical analysis, Boundary Representation (B-Rep) model is required, which provides the efficient volume description of an object. In engineering, the parametric solid modeling method is used for building B-Rep model. However, a geological modeling generally adopts discrete modeling based on the triangulated surface, called a Sealed Geological Model, which defines geological domain by using geological interfaces such as horizons, faults, intrusives and modeling boundaries. Discrete B-Rep model is incompatible with mesh generation softwares in engineering because of discrepancies between discrete and parametric technique. In this research we have developed a converting program from Sealed Geological Model to Gmsh and COMSOL software. The developed program can convert complex geological model built by geomodeling software to user-friendly FEM software and it can be applied to geoscience simulation such as geothermal, mechanical rock simulation etc.

on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks (적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링)

  • 오성권;박병준;박춘성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

Radar Signal Generation Technique using Ambiguity Function (모호함수를 이용한 레이더 신호 생성기법)

  • 홍동희;박성철;이성용;김정렬;박진규
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.80-88
    • /
    • 2003
  • Radar signal simulation is increasingly gaining in importance according as modem radar systems are more complex. Although computer performance has been advanced, it is difficult to implement the real-time simulation because the detailed model for the radar is necessary to get the desired accuracy. In order to achieve real time operation, we propose radar signal generation technique using ambiguity function, Instead of wellknown correlation method. The ambiguity function is the mathematical modeling of the signal processing procedure which is a simulation section to require the most computations.

Probabilistic seismic assessment of structures considering soil uncertainties

  • Hamidpour, Sara;Soltani, Masoud;Shabdin, Mojtaba
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.165-175
    • /
    • 2017
  • This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full probabilistic analysis methods like MC commonly are very time consuming, the feasibility of simple approximate methods' application including First Order Second Moment (FOSM) method and ASCE41 proposed approach for the soil uncertainty considerations is investigated. By comparing the results of the approximate methods with the results obtained from MC, it's observed that the results of both FOSM and ASCE41 methods are in good agreement with the results of MC simulation technique and they show acceptable accuracy in predicting the response variability.

2.45GHz CMOS Up-conversion Mixer & LO Buffer Design

  • Park, Jin-Young;Lee, Sang-Gug;Hyun, Seok-Bong;Park, Kyung-Hwan;Park, Seong-Su
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 2002
  • A 2.45GHz double-balanced modified Gilbert-type CMOS up-conversion mixer design is introduced, where the PMOS current-reuse bleeding technique is demonstrated to be efficient in improving conversion gain, linearity, and noise performance. An LO buffer is included in the mixer design to perform single-ended to differential conversion of the LO signal on chip. Simulation results of the design based on careful modeling of all active and passive components are examined to explain in detail about the characteristic improvement and degradation provided by the proposed design. Two kinds of chips were fabricated using a standard $0.35\mu\textrm$ CMOS process, one of which is the mixer chip without the LO buffer and the other is the one with it. The measured characteristics of the fabricated chips are quite excellent in terms of conversion gain, linearity, and noise, and they are in close match to the simulation results, which demonstrates the adequacy of the modeling approach based on the macro models for all the active and passive devices used in the design. Above all the benefits provided by the current-reuse bleeding technique, the improvement in noise performance seems most valuable.

Stable Anisotropic Freezing Modeling Technique Using the Interaction between IISPH Fluids and Ice Particles (안정적이고 이방성한 빙결 모델링을 위한 암시적 비압축성 유체와 얼음 입자간의 상호작용 기법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.5
    • /
    • pp.1-13
    • /
    • 2020
  • In this paper, we propose a new method to stable simulation the directional ice shape by coupling of freezing solver and viscous water flow. The proposed ice modeling framework considers viscous fluid flow in the direction of ice growth, which is important in freezing simulation. The water simulation solution uses the method of applying a new viscous technique to the IISPH(Implicit incompressible SPH) simulation, and the ice direction and the glaze effect use the proposed anisotropic freezing solution. The condition in which water particles change state to ice particles is calculated as a function of humidity and new energy with water flow. Humidity approximates a virtual water film on the surface of the object, and fluid flow is incorporated into our anisotropic freezing solution to guide the growth direction of ice. As a result, the results of the glaze and directional freezing simulations are shown stably according to the flow direction of viscous water.

Experimental Characterization and Modeling for Electromagnetic Interference (EMI) Estimation due to PDP System (PDP 시스템의 EMI 예측을 위한 회로 모델링 및 실험적 검증)

  • 강종구;어영선;심종인;정주영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.173-176
    • /
    • 2001
  • A new EMI estimation technique concerned with a PDP system is presented. A physical circuit model is developed which can fairly well describe the AC-PDP system. Then EMIs are determined by exploiting Hertzian dipole antenna model. The simulation results are experimentally verified with the test panel. The AC PDP system was measured in the frequency range of 30MHz ~ 300MHz in a semi-anechoic chamber, according to CISPR 13 code. Thereby, it is shown that the proposed technique can be usefully employed for EMI reduction.

  • PDF