• 제목/요약/키워드: Modeling and Prediction

검색결과 1,889건 처리시간 0.026초

Comparison between the Application Results of NNM and a GIS-based Decision Support System for Prediction of Ground Level SO2 Concentration in a Coastal Area

  • Park, Ok-Hyun;Seok, Min-Gwang;Sin, Ji-Young
    • Environmental Engineering Research
    • /
    • 제14권2호
    • /
    • pp.111-119
    • /
    • 2009
  • A prototype GIS-based decision support system (DSS) was developed by using a database management system (DBMS), a model management system (MMS), a knowledge-based system (KBS), a graphical user interface (GUI), and a geographical information system (GIS). The method of selecting a dispersion model or a modeling scheme, originally devised by Park and Seok, was developed using our GIS-based DSS. The performances of candidate models or modeling schemes were evaluated by using a single index(statistical score) derived by applying fuzzy inference to statistical measures between the measured and predicted concentrations. The fumigation dispersion model performed better than the models such as industrial source complex short term model(ISCST) and atmospheric dispersion model system(ADMS) for the prediction of the ground level $SO_2$ (1 hr) concentration in a coastal area. However, its coincidence level between actual and calculated values was poor. The neural network models were found to improve the accuracy of predicted ground level $SO_2$ concentration significantly, compared to the fumigation models. The GIS-based DSS may serve as a useful tool for selecting the best prediction model, even for complex terrains.

데이터 마이닝 기법의 기업도산예측 실증분석 (A Study of Data Mining Techniques in Bankruptcy Prediction)

  • Lee, Kidong
    • 한국경영과학회지
    • /
    • 제28권2호
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

Channel modeling based on multilayer artificial neural network in metro tunnel environments

  • Jingyuan Qian;Asad Saleem;Guoxin Zheng
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.557-569
    • /
    • 2023
  • Traditional deterministic channel modeling is accurate in prediction, but due to its complexity, improving computational efficiency remains a challenge. In an alternative approach, we investigated a multilayer artificial neural network (ANN) to predict large-scale and small-scale channel characteristics in metro tunnels. Simulated high-precision training datasets were obtained by combining measurement campaign with a ray tracing (RT) method in a metro tunnel. Performance on the training data was used to determine the number of hidden layers and neurons of the multilayer ANN. The proposed multilayer ANN performed efficiently (10 s for training; 0.19 ms for prediction), and accurately, with better approximation of the RT data than the single-layer ANN. The root mean square errors (RMSE) of path loss (2.82 dB), root mean square delay spread (0.61 ns), azimuth angle spread (3.06°), and elevation angle spread (1.22°) were impressive. These results demonstrate the superior computing efficiency and model complexity of ANNs.

Fuzzy methodology application for modeling uncertainties in chloride ingress models of RC building structure

  • Do, Jeongyun;Song, Hun;So, Seungyoung;Soh, Yangseob
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.325-343
    • /
    • 2005
  • Chloride ingress is a common cause of deterioration of reinforced concrete located in coastal zone. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for assessing the reliability of an existing structure. The modeling is also needed for predicting the deterioration of a reinforced structure. The existing deterministic solution for prediction model of corrosion initiation cannot reflect uncertainties which input variables have. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. There are a lot of prediction model for predicting the time of reinforcement corrosion of structures exposed to chloride-induced corrosion environment. In this work, RILEM model formula and Crank's solution of Fick's second law of diffusion is used. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters instead of random variables of probabilistic modeling of Monte Carlo Simulation and the fuzziness of the time to corrosion initiation is determined by the fuzzy arithmetic of interval arithmetic and extension principle. An analysis is implemented by comparing deterministic calculation with fuzzy arithmetic for above two prediction models.

Comparison of Different Deep Learning Optimizers for Modeling Photovoltaic Power

  • Poudel, Prasis;Bae, Sang Hyun;Jang, Bongseog
    • 통합자연과학논문집
    • /
    • 제11권4호
    • /
    • pp.204-208
    • /
    • 2018
  • Comparison of different optimizer performance in photovoltaic power modeling using artificial neural deep learning techniques is described in this paper. Six different deep learning optimizers are tested for Long-Short-Term Memory networks in this study. The optimizers are namely Adam, Stochastic Gradient Descent, Root Mean Square Propagation, Adaptive Gradient, and some variants such as Adamax and Nadam. For comparing the optimization techniques, high and low fluctuated photovoltaic power output are examined and the power output is real data obtained from the site at Mokpo university. Using Python Keras version, we have developed the prediction program for the performance evaluation of the optimizations. The prediction error results of each optimizer in both high and low power cases shows that the Adam has better performance compared to the other optimizers.

신경회로망을 이용한 ITO 박막 성장 공정의 모형화 (Modeling of Indium Tin Oxide(ITO) Film Deposition Process using Neural Network)

  • 민철홍;박성진;윤능구;김태선
    • 한국전기전자재료학회논문지
    • /
    • 제22권9호
    • /
    • pp.741-746
    • /
    • 2009
  • Compare to conventional Indium Tin Oxide (ITO) film deposition methods, cesium assisted sputtering method has been shown superior electrical, mechanical, and optical film properties. However, it is not easy to use cesium assisted sputtering method since ITO film properties are very sensitive to Cesium assisted equipment condition but their mechanism is not yet clearly defined physically or mathematically. Therefore, to optimize deposited ITO film characteristics, development of accurate and reliable process model is essential. For this, in this work, we developed ITO film deposition process model using neural networks and design of experiment (DOE). Developed model prediction results are compared with conventional statistical regression model and developed neural process model has been shown superior prediction results on modeling of ITO film thickness, sheet resistance, and transmittance characteristics.

A rolling analysis on the prediction of value at risk with multivariate GARCH and copula

  • Bai, Yang;Dang, Yibo;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • 제25권6호
    • /
    • pp.605-618
    • /
    • 2018
  • Risk management has been a crucial part of the daily operations of the financial industry over the past two decades. Value at Risk (VaR), a quantitative measure introduced by JP Morgan in 1995, is the most popular and simplest quantitative measure of risk. VaR has been widely applied to the risk evaluation over all types of financial activities, including portfolio management and asset allocation. This paper uses the implementations of multivariate GARCH models and copula methods to illustrate the performance of a one-day-ahead VaR prediction modeling process for high-dimensional portfolios. Many factors, such as the interaction among included assets, are included in the modeling process. Additionally, empirical data analyses and backtesting results are demonstrated through a rolling analysis, which help capture the instability of parameter estimates. We find that our way of modeling is relatively robust and flexible.

솔레노이드 구동 수소인젝터의 성능예측 (Performance Prediction of solenoid Actuated Hydrogen Injector)

  • 이형승;이용규;김한조;김응서
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.174-185
    • /
    • 1997
  • The performance of the solenoid actuated hydrogen injector and the capacitive peak-hold type driving circuit was predicted through the modeling of the injector and the driving circuit the modeling was composed of the driving circuit, the solenoid, the moving parts of the injector, and the hydrogen injection system. The performance of the injector through the modeling was compared with the results of the solenoid and injector rig tests, and those were consistent with each other. Through the prediction of the injector performance, the effects of the components such as electrical resistor, capacitor, and injector spring are easily known to the injector performance required.

  • PDF

Numerical simulation of shaking table tests on 3D reinforced concrete structures

  • Bayhan, Beyhan
    • Structural Engineering and Mechanics
    • /
    • 제48권2호
    • /
    • pp.151-171
    • /
    • 2013
  • The current paper presents the numerical blind prediction of nonlinear seismic response of two full-scale, three dimensional, one-story reinforced concrete structures subjected to bidirectional earthquake simulations on shaking table. Simulations were carried out at the laboratories of LNEC (Laboratorio Nacional de Engenharia Civil) in Lisbon, Portugal. The study was motivated by participation in the blind prediction contest of shaking table tests, organized by the challenge committee of the 15th World Conference on Earthquake Engineering. The test specimens, geometrically identical, designed for low and high ductility levels, were subjected to subsequent earthquake motions of increasing intensity. Three dimensional nonlinear analytical models were implemented and subjected to the input base motions. Reasonably accurate reproduction of the measured displacement response was obtained through appropriate modeling. The goodness of fit between analytical and measured results depended on the details of the analytical models.

한국형고속철도 열차제어시스템 하부구성요소 신뢰도예측에 관한 연구 (A Study on Reliability Prediction for Korea High Speed Train Control System)

  • 신덕호;이재호;이강미;김용규
    • 한국철도학회논문집
    • /
    • 제9권4호
    • /
    • pp.419-424
    • /
    • 2006
  • In this paper we study on a method to predict and to demonstrate the reliability of the Korea high speed train control system in quantitative point of view. For the prediction of the reliability in train control system which is composed of electronic parts, Relax Software 7.7 automation tool is employed and MIL-HDBK-217 Handbook that is a standard for the prediction of the failure rate in electronic components is used. Mean Time Between Failure (MTBF) is predicted based on the failure rate of the subsystems, State Modeling and Markov Modeling method is used to express a reliability function of the train control system composed by hardware redundancy as a function of time. We propose a Reliability Test which is performed on the level of the subsystems and Failure Report, Analysing, Correction action system which use the test operation data to prove the predicted reliability.