• Title/Summary/Keyword: Modeling and Characteristics

Search Result 4,618, Processing Time 0.035 seconds

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.262-267
    • /
    • 2002
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of a axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

  • PDF

Nonlinear Dynamic Modeling and Stability Analysis of an Axially Oscillating Cantilever Beam With a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 비선형 동적 모델링 및 안정성 해석)

  • 홍정환;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.477-482
    • /
    • 2003
  • A nonlinear modeling method for an axially oscillating cantilever beam with a concentrated mass is presented in this paper. Hybrid deformation variables are employed fur the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. The geometric nonlinear effects of stretching and curvature are considered to accurately predict the frequency response characteristics of the oscillating cantilever beam. The effects of the magnitude and the location on the concentrated mass on the frequency characteristics are investigated. It is found that the dynamic instability is significantly influenced by the two parameters.

  • PDF

Characteristics Analysis of Capacitor Discharge Impulse Magnetizing Circuit using SPICE (SPICE를 이용한 커패시터 방전 임펄스 착자 회로의 특성 해석)

  • 백수현;김필수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.206-215
    • /
    • 1994
  • A method for simulating general characteristics and temperature characteristics of discharging SCR of the capacitor discharge impulse magnetizer-magnetizing fixture system using SPICE is presented. This method has been developed which can aid the design, understanding and inexpensive, time-saving of magnetizing circuit. As the detailed characteristic of magnetizing circuit can be obtained, the efficient design of the magntizing circuit which produce desired magnet will be possible using our SPICE modeling. Especially, computation of the temperature rise of discharging SCR is very important since it gives some indication of thermal characteristic of discharging circuit. It is implemented on a 486 personal computer, and the modeling results are checked against experimental measures. The experimental results have been achived using 305[V] and 607[V] charging voltage, low-energy capacitor discharge impulse magnetizer-magnetizing fixture of air cleaner DC motor.

  • PDF

Characteristics Analysis in A Pole Changing Memory Motor Using Coupled FEM & Preisach Modeling (유한요소법과 프라이자흐 모델이 결합된 해석기법을 이용한 극 변환 메모리모터의 동특성해석)

  • Lee, Seung-Chul;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.965-970
    • /
    • 2011
  • This paper deals with the PM performance evaluations in a pole changing memory motor (PCMM) using a coupled transient finite element method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of permanent magnets. The focus of this paper is the characteristics evaluation relative to magnetizing direction and the pole number of machine on re-demagnetization condition in a pole changing memory motor.

Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling (NATM 터널의 응력-간극수압 연계 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.189-198
    • /
    • 2006
  • This paper concerns the finite element (FE) modeling approach for NATM tunneling in water bearing ground within the framework of stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as soil-water characteristics, location of hydraulic boundary conditions, the way of modeling drainage flow, among others. The results indicate that the soil-water characteristics plays the most important role in the tunneling-induced settlement characteristics. Based on the results, modeling guidelines were suggested for stress-pore prssure coupled finite element modeling of NATM tunneling.

  • PDF

Wastewater process modeling

  • Serdarevic, Amra;Dzubur, Alma
    • Coupled systems mechanics
    • /
    • v.5 no.1
    • /
    • pp.21-39
    • /
    • 2016
  • Wastewater process models are the essential tools for understanding relevant aspects of wastewater treatment system. Wastewater process modeling provides more options for upgrades and better understanding of new plant design, as well as improvements of operational controls. The software packages (BioWin, GPS-X, Aqua designer, etc) solve a series of simulated equations simultaneously in order to propose several solutions for a specific facility. Research and implementation of wastewater process modeling in combination with computational fluid dynamics enable testing for improvements of flow characteristics for WWTP and at the same time exam biological, physical, and chemical characteristics of the flow. Application of WWTP models requires broad knowledge of the process and expertise in modeling. Therefore, an efficient and good modeling practice requires both experience and set of proper guidelines as a background.

VOICE SOURCE ESTIMATION USING SEQUENTIAL SVD AND EXTRACTION OF COMPOSITE SOURCE PARAMETERS USING EM ALGORITHM

  • Hong, Sung-Hoon;Choi, Hong-Sub;Ann, Sou-Guil
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.893-898
    • /
    • 1994
  • In this paper, the influence of voice source estimation and modeling on speech synthesis and coding is examined and then their new estimation and modeling techniques are proposed and verified by computer simulation. It is known that the existing speech synthesizer produced the speech which is dull and inanimated. These problems are arised from the fact that existing estimation and modeling techniques can not give more accurate voice parameters. Therefore, in this paper we propose a new voice source estimation algorithm and modeling techniques which can not give more accurate voice parameters. Therefore, in this paper we propose a new voice source estimation algorithm and modeling techniques which can represent a variety of source characteristics. First, we divide speech samples in one pitch region into four parts having different characteristics. Second, the vocal-tract parameters and voice source waveforms are estimated in each regions differently using sequential SVD. Third, we propose composite source model as a new voice source model which is represented by weighted sum of pre-defined basis functions. And finally, the weights and time-shift parameters of the proposed composite source model are estimeted uning EM(estimate maximize) algorithm. Experimental results indicate that the proposed estimation and modeling methods can estimate more accurate voice source waveforms and represent various source characteristics.

  • PDF

Fault Simulation and Analysis of Generator (발전기의 사고 시뮬레이션과 분석)

  • Park, Chul-Won;Oh, Yong-Taek
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.151-158
    • /
    • 2013
  • Large generator of power plant is very important. In order to protect large generator from faults, digital protective relay or IED is required. However, all protective relays for generators of the domestic power plant are operated by foreign products. And now, for technological independence from foreign and improvement of import substitution effect, IEDs using domestic technology are being developed. To evaluate performance of developing next-generation power devices, the study of the dynamic characteristics of the power plant, generator system modeling, fault simulation and analysis, should be considered. Specially, To obtain IEEE Standards COMTRADE format for relay operation test, generator system modeling and fault simulation using PSCAD/EMTDC tools must be preceded. Until now, a complete modeling of generator internal windings and fault simulation techniques dose not exist. In this paper, for evaluation performance of relay elements of developing IED, the generator system modeling and various faults simulation using PSCAD/EMTDC tools were performed. And then, the various transient phenomena through obtained relaying signal of developed modeling were analyzed.

Modeling of Electrical Characteristics in Poly Silicon Thin Film Transistor with Process Parameter (다결정 실리콘 박막 트랜지스터에서 공정 파라미터에 따른 전기적 특성의 모델링)

  • Jung, Eun-Sik;Choi, Young-Sik;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.201-204
    • /
    • 2001
  • In this paper, for modeling of electrical characteristics in Poly Silicon Thin Film Transistors with process parameters set up optimum values, So, the I-V characteristics of poly silicon TFT parameters are examined and simulated in terms of the variations in process parameter. And these results compared and analyzed simulation values with examination value. The simulation program for characteristic analysis used SUPREM IV for processing, Matlab for modeling by mathematics, and SPICE for electric characteristic of devices. Input parameter for simulation characteristics is like condition of device process sequence, these electric characteristic of $I_D-V_D$ $I_D-V_G$, variations of grain size. The Gate oxide thickness of poly silicon are showed similar results between real device characteristics and simulation characteristics.

  • PDF

Modeling of Electrical Characteristics in Poly Silicon Thin Film Transistor with Process Parameter (다결정 실리콘 박막 트랜지스터에서 공정 파라미터에 따른 전기적 특성의 모델링)

  • 정은식;최영식;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.201-204
    • /
    • 2001
  • In this paper, for modeling of electrical characteristics in Poly Silicon Thin Film Transistors with process parameters set up optimum values. So, the I-V characteristics of poly silicon TFT parameters are examined and simulated in terms of the variations in process parameter. And these results compared and analyzed simulation values with examination value. The simulation program for characteristic analysis used SUPREM IV for processing, Matlab for modeling by mathematics, and SPICE for electric characteristic of devices. Input parameter for simulation characteristics is like condition of device process sequence, these electric characteristic of I$_{D}$-V$_{D}$, I$_{D}$-V$_{G}$, variations of grain size. The Gate oxide thickness of poly silicon are showed similar results between real device characteristics and simulation characteristics.ristics.

  • PDF