• Title/Summary/Keyword: Modeling Continuum

Search Result 146, Processing Time 0.024 seconds

2D continuum viscodamage-embedded discontinuity model with second order mid-point scheme

  • Do, Xuan Nam;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.669-690
    • /
    • 2018
  • This paper deals with numerical modeling of dynamic failure phenomena in rate-sensitive brittle and/or ductile materials. To this end, a two-dimensional continuum viscodamage-embedded discontinuity model, which is based on our previous work (see Do et al. 2017), is developed. More specifically, the pre-peak nonlinear and rate-sensitive hardening response of the material behavior, representing the fracture-process zone creation, is described by a rate-dependent continuum damage model. Meanwhile, an embedded displacement discontinuity model is used to formulate the post-peak response, involving the macro-crack creation accompanied by exponential softening. The numerical implementation in the context of the finite element method exploiting the second-order mid-point scheme is discussed in detail. In order to show the performance of the model several numerical examples are included.

Packages of Unified modeling for Radiative transfer, gas Energetics, and Chemistry (PUREC)

  • Lee, Seokho;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2017
  • Protoplanetary disks (PPDs) are a natural consequence of star formation and play crucial roles in planet formation. Atacama Large Millimeter/submillimeter Array (ALMA) has provided sub-mm data for the PPDs with a high angular resolution and sensitivity, and it makes us enable to study PPDs in detail. We have developed Packages of Unified modeling for Radiative transfer, gas Energetics, and Chemistry (PUREC), which consists of a self-consistent thermo-chemical model and line and continuum radiative transfer models, in order to interpret and predict the ALMA observations for PPDs. In this talk, we introduce capabilities of PUREC.

  • PDF

A Methodology to Formulate Stochastic Continuum Model from Discrete Fracture Network Model and Analysis of Compatibility between two Models (개별균열 연결망 모델에 근거한 추계적 연속체 모델의 구성기법과 두 모델간의 적합성 분석)

  • 장근무;이은용;박주완;김창락;박희영
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.156-166
    • /
    • 2001
  • A stochastic continuum(SC) modeling technique was developed to simulate the groundwater flow pathway in fractured rocks. This model was developed to overcome the disadvantageous points of discrete fracture network(DFN) modes which has the limitation of fracture numbers. Besides, SC model is able to perform probabilistic analysis and to simulate the conductive groundwater pathway as discrete fracture network model. The SC model was formulated based on the discrete fracture network(DFN) model. The spatial distribution of permeability in the stochastic continuum model was defined by the probability distribution and variogram functions defined from the permeabilities of subdivided smaller blocks of the DFN model. The analysis of groundwater travel time was performed to show the consistency between DFN and SC models by the numerical experiment. It was found that the stochastic continuum modes was an appropriate way to provide the probability density distribution of groundwater velocity which is required for the probabilistic safety assessment of a radioactive waste disposal facility.

  • PDF

An Efficient Background Modeling and Correction Method for EDXRF Spectra (EDXRF 스펙트럼을 위한 효율적인 배경 모델링과 보정 방법)

  • Park, Dong Sun;Jagadeesan, Sukanya;Jin, Moonyong;Yoon, Sook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.238-244
    • /
    • 2013
  • In energy dispersive X-ray fluorescence analysis, the removal of the continuum on which the X-ray spectrum is superimposed is one of the most important processes, since it has a strong influence on the analysis result. The existing methods which have been used for it usually require tight constraints or prior information on the continuum. In this paper, an efficient background correction method is proposed for Energy Dispersive X-ray fluorescence (EDXRF) spectra. The proposed method has two steps of background modeling and background correction. It is based on the basic concept which differentiates background areas from the peak areas in a spectrum and the SNIP algorithm, one of the popular methods for background removal, is used to enhance the performance. After detecting some points which belong to the background from a spectrum, its background is modeled by a curve fitting method based on them. And then the obtained background model is subtracted from the raw spectrum. The method has been shown to give better results than some of traditional methods, while working under relatively weak constraints or prior information.

Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity

  • Kral, Petr;Hradil, Petr;Kala, Jiri
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.227-237
    • /
    • 2018
  • Today, the modeling of concrete as a material within finite element simulations is predominantly done through nonlinear material models of concrete. In current sophisticated computational systems, there are a number of complex concrete material models which are based on theory of plasticity, damage mechanics, linear or nonlinear fracture mechanics or combinations of those theories. These models often include very complex constitutive relations which are suitable for the modeling of practically any continuum mechanics tasks. However, the usability of these models is very often limited by their parameters, whose values must be defined for the proper realization of appropriate constitutive relations. Determination of the material parameter values is very complicated in most material models. This is mainly due to the non-physical nature of most parameters, and also the large number of them that are frequently involved. In such cases, the designer cannot make practical use of the models without having to employ the complex inverse parameter identification process. In continuum mechanics, however, there are also constitutive relations that require the definition of a relatively small number of parameters which are predominantly of a physical nature and which describe the behavior of concrete very well within a particular task. This paper presents an example of such constitutive relations which have the potential for implementation and application in finite element systems. Specifically, constitutive relations for modeling the plane stress state of concrete are presented and subsequently tested and evaluated in this paper. The relations are based on the incremental theory of elastic strain-hardening plasticity in which a non-associated flow rule is used. The calculation result for the case of concrete under uniaxial compression is compared with the experimental data for the purpose of the validation of the constitutive relations used.

A New Iron Emission Template for Active Galactic Nuclei

  • Park, Daeseong;Barth, Aaron J.;Ho, Luis C.;Laor, Ari
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.36.2-36.2
    • /
    • 2019
  • Fe II emission is a prominent and ubiquitous feature in the spectra of broad-line Active Galactic Nuclei (AGN) by producing a pseudo-continuum from UV to optical with complex and strong blends of the numerous emission lines themselves, other emission lines, and continuum. Since theoretical modeling of such intricate Fe II emission is very difficult and still far from able to reproduce observed data in detail, an empirical iron emission template, derived from observations of a narrow-line Seyfert 1 galaxy, is an essential and practical tool to obtain accurate measurements of all the emission lines and continuum in AGN spectra. However, the existing iron templates, based on the single prototypical strong Fe II emitter I Zw 1, are suffering from inadequate S/N and non-simultaneous, inconsistent data with limited wavelength coverage, which consequently limit the accuracy of all the spectral measurements. To overcome the limitations and construct an improved iron template with wide spectral coverage, high-quality UV and optical spectra for the new and better identified template galaxy, Mrk 493, were successfully obtained from our HST STIS program (GO-14744). We will show the preliminary results for multicomponent spectral decomposition of the data and template construction with application tests to various AGN spectra and comparison with previous templates.

  • PDF

Continuum Beam Analogy for Analysis of Framed Tube Structures with Multiple Internal Tubes (연속 보 해석 기법에 의한 내부튜브를 가진 골조 튜브 구조물의 해석)

  • 이강건
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.215-221
    • /
    • 2000
  • A simple numerical modeling technique is proposed for the analysis of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the structural behaviours is reduced to the solution of a single second order linear differential equation. The numerical analysis uses the variational approach on the basis of the minimum potential energy priniciple. Three framed-tube sructures with single, two and three internal tubes are analysed to verify the applicability and reliability of the proposed method.

  • PDF

Response of a rocksalt crystal to electromagnetic wave modeled by a multiscale field theory

  • Lei, Yajie;Lee, James D.;Zeng, Xiaowei
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.467-476
    • /
    • 2008
  • In this work, a nano-size rocksalt crystal (magnesium oxide) is considered as a continuous collection of unit cells, while each unit cell consists of discrete atoms; and modeled by a multiscale concurrent atomic/continuum field theory. The response of the crystal to an electromagnetic (EM) wave is studied. Finite element analysis is performed by solving the governing equations of the multiscale theory. Due to the applied EM field, the inhomogeneous motions of discrete atoms in the polarizable crystal give rise to the change of microstructure and the polarization wave. The relation between the natural frequency of this system and the driving frequency of the applied EM field is found and discussed.

Measuring Nano-Width of Wave Fronts in Combustion: a Numerical Approach (연소시 발생하는 파면의 나노 사이즈 두께 측정: 수치적 접근)

  • Yoh, Jai-Ick
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.20-27
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF

A New Approach of Multi-Scale Simulation for Investigating Nano-Scale Material Deformation Behavior (나노스케일 재료 변형 거동을 위한 새로운 멀티스케일 접근법)

  • Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • Recently, an approach for nano-scale material deformation has been developed that couples the atomistic and continuum approaches using Finite Element Method (FEM) and Molecular Dynamics (MD). However, this approach still has problems to connect two approaches because of the difference of basic assumptions, continuum and atomistic modeling. To solve this problem, an alternative way is developed that connects the QuasiMolecular Dynamics (QMD) and molecular dynamics. In this paper, we suggest the way to make and validate the MD-QMD coupled model.

  • PDF