Browse > Article
http://dx.doi.org/10.12989/csm.2018.7.6.669

2D continuum viscodamage-embedded discontinuity model with second order mid-point scheme  

Do, Xuan Nam (Universite de Technologie Compiegne / Sorbonne Universites, Laboratoire Roberval de Mecanique Centre de Recherche Royallieu, Rue Personne de Roberval)
Ibrahimbegovic, Adnan (Universite de Technologie Compiegne / Sorbonne Universites, Laboratoire Roberval de Mecanique Centre de Recherche Royallieu, Rue Personne de Roberval)
Publication Information
Coupled systems mechanics / v.7, no.6, 2018 , pp. 669-690 More about this Journal
Abstract
This paper deals with numerical modeling of dynamic failure phenomena in rate-sensitive brittle and/or ductile materials. To this end, a two-dimensional continuum viscodamage-embedded discontinuity model, which is based on our previous work (see Do et al. 2017), is developed. More specifically, the pre-peak nonlinear and rate-sensitive hardening response of the material behavior, representing the fracture-process zone creation, is described by a rate-dependent continuum damage model. Meanwhile, an embedded displacement discontinuity model is used to formulate the post-peak response, involving the macro-crack creation accompanied by exponential softening. The numerical implementation in the context of the finite element method exploiting the second-order mid-point scheme is discussed in detail. In order to show the performance of the model several numerical examples are included.
Keywords
dynamics; fracture process zone-FPZ; strain-softening; localization; finite element; embedded discontinuity; mid-point scheme;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method: Basic Formulation and Linear Problems, McGraw-Hill, London, U.K.
2 Alfaiate, J., Wells, G.N. and Sluys, L.J. (2002), "On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture", Eng. Fract. Mech., 69(6), 661-686.   DOI
3 Armero, F. and Garikipati, K. (1995), "Recent advances in the analysis and numerical simulation of strain localization in inelastic solids. In Owen, E., Onate, D.R.J., Hinton, E. (Eds)", Proceedings of the Computational Plasticity IV, CIMNE, Barcelona, 547-561.
4 Armero, F. and Linder, C. (2009), "Numerical simulation of dynamic fracture using finite elements with embedded discontinuities", Int. J. Fract., 160(2), 119-141.   DOI
5 Arrea, M. and Ingraffea, A.R. (1982), Mixed-Mode Crack Propagation in Mortar and Concrete, Report No. 81-13, Department of Structural Engineering, Cornell University, Ithaca, New York, U.S.A.
6 Bazant, Z.P. (1976), "Instability, ductility, and size effect in strain-softening concrete", J. Eng. Mech. Div., 102, 331-344.
7 Bazant, Z.P., Belytschko, T.B. and Chang, T.P. (1984), "Continuum theory for strain softening", J. Eng. Mech., 110(12), 1666-1691.   DOI
8 Brancherie, D. and Ibrahimbegovic, A. (2009), "Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures. Part I: Theoretical formulation and numerical implementation", Eng. Comput., 26(1/2), 100-127.   DOI
9 Cervera, M., Oliver, J. and Manzoli, O. (1995), "A rate dependent isotropic damage model for the seismic analysis of concrete dams", Earthq. Eng. Struct. Dyn., 25, 987-1010.
10 De Borst, R., Sluys, L.J., Muhlhaus, H.B. and Pamin, J. (1993), "Fundamental issues in finite element analyses of localization of deformation", Eng. Comput., 10, 99-121.   DOI
11 Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2017), "Dynamics framework for 2D anisotropic continuum-discrete damage model for progressive localized failure of massive structures", Comput. Struct., 183, 14-26.   DOI
12 Grady, D.E. and Kipp, M.E. (1980), "Continuum modelling of explosive fracture in oil shale", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 17(3), 147-157.   DOI
13 Dujc, J., Brank, B. and Ibrahimbegovic, A. (2013), "Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids", Int. J. Numer. Meth. Eng., 94(12), 1075-1098.   DOI
14 Fahrenthold, E.P. (1991), "A continuum damage for facture of brittle solids under dynamic loading", J. Appl. Mech., 58(4), 904-909.   DOI
15 Geuzaine, C. and Remacle, J.F. (2009), "Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities", Int. J. Numer. Meth. Eng., 79(11), 1309-1331.   DOI
16 Hamdi, E., Romdhane, N.B. and Le Cleac'h, J.M. (2011), "A tensile damage model for rocks: Application to blast induced damage assessment", Comput. Geotech., 38(2), 133-141.   DOI
17 Huespe, A.E., Oliver, J., Sanchez, P.J., Blanco, S. and Sonzogni, V. (2006), "Strong discontinuity approach in dynamic fracture simulations", Mecan. Comput., 25, 1997-2018.
18 Ibrahimbegovic, A. and Melnyk, S. (2007), "Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method", Comput. Mech., 40(1), 149-155.   DOI
19 Ibrahimbegovic, A. and Wilson, E.L. (1991), "A modified method of incompatible modes", Commun. Appl. Numer. Meth., 7(3), 187-194.   DOI
20 Linder, C. and Armero, F. (2007), "Finite element with embedded strong discontinuities for the modeling of failure in solids", Numer. Meth. Eng., 72(12), 1391-1433.   DOI
21 Lu, Y. and Xu, K. (2004), "Modelling of dynamic behaviour of concrete materials under blast loading", Int. J. Sol. Struct., 41(1), 131-143.   DOI
22 Petersson, P.E. (1981), Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials, Report No. TVBM-1006, Division of Building Materials, University of Lund, Lund, Sweden.
23 Needleman, A. (1988), "Material rate dependence and mesh sensitivity in localization problems", Comput. Meth. Appl. Mech. Eng., 63(1), 69-85.
24 Oliver, J. (1996), "Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part I & Part II", Int. J. Numer. Meth. Eng., 39(21), 3575-3623.   DOI
25 Oliver, J. (2000), "On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations", Int. J. Sol. Struct., 37(48-50), 7207-7229.   DOI
26 Radulovic, R., Bruhns, O.T. and Mosler, J. (2011), "Effective 3D failure simulations by combining the advantages of embedded strong discontinuity approaches and classical interface elements", Eng. Fract. Mech., 78(12), 2470-2485.   DOI
27 Rots, J.G., Nauta, P., Kusters, G.M.A. and Blaauwendraad, J. (1985), "Smeared crack approach and fracture localization in concrete", Heron, 30(1), 1-48.
28 Saksala, T., Brancherie, D., Harari, I. and Ibrahimbegovic, A. (2015), "Combined continuum damageembedded discontinuity model for explicit dynamic fracture analyses of quasi-brittle materials", Int. J. Numer. Meth. Eng., 101(3), 230-250.   DOI
29 Simo, J.C. and Rifai, M.S. (1990), "A class of mixed assumed strain methods and the method of incompatible modes", Int. J. Numer. Meth. Eng., 29(8), 1595-1638.   DOI
30 Simo, J.C., Oliver, J. and Armero, F. (1993), "An analysis of strong discontinuity induced by strain softening solutions in rate-independent solids", J. Comput. Mech., 12(5), 277-296.   DOI
31 Yang, R., Bawden, W.F. and Katsabanis, P.D. (1996), "A new constitutive model for blast damage", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(3), 245-254.   DOI
32 Suaris, W. and Shah, S.P. (1984), "Rate-sensitive damage theory for brittle solids", J. Eng. Mech., 110(6), 985-997.   DOI
33 Taylor, L.M., Chen, E.P. and Kuszmaul, J.S. (1986), "Microcrack-induced damage accumulation in brittle rock under dynamic loading", Comput. Meth. Appl. Mech. Eng., 55(3), 301-320.   DOI
34 Wang, Z., Li, Y. and Wang, J.G. (2008), "A method for evaluating dynamic tensile damage of rock", Eng. Fract. Mech., 75(10), 2812-2825.   DOI
35 Yazdchi, M., Valliappan, S. and Zhang, W. (1996), "Continuum model for dynamic damage evolution of anisotropic brittle materials", Int. J. Numer. Meth. Eng., 39(9), 1555-1583.   DOI