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ABSTRACT

Recently, an approach for nano-scale material deformation has been developed that couples the atomistic and 

continuum approaches using Finite Element Method (FEM) and Molecular Dynamics (MD). However, this 

approach still has problems to connect two approaches because of the difference of basic assumptions, continuum 

and atomistic modeling. To solve this problem, an alternative way is developed that connects the QuasiMolecular 

Dynamics (QMD) and molecular dynamics. In this paper, we suggest the way to make and validate the 

MD-QMD coupled model.
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1. Introduction

Traditionally, two kinds of approaches to model 

nano‐scale material deformation have been used. The 

continuum theory, under the assumption that the 

material deformation can be treated as continuum 

material, and the molecular dynamics (MD) aiming 

the detailed behavior of each individual atom based 

on quantum mechanics are those approaches. The 

continuum theory has been impressively successful in 

solid mechanics. However, this approach is no longer 

valid for the nano‐scale material deformation due the 

violation of continuum assumption(1). Therefore, 

molecular dynamics to study the properties and 

defects of micro‐ and nano‐systems has been 

suggested. It is already proved that this approach 

returns good quantitative results of studies for nano‐
scale materials. This study has been enable due to 

the recent advancement in computer that treats a 

large amount of data with high speed CPU. 

Nevertheless, the material size that can be analyzed 

is limited since the material of actual size includes 

an astronomic number of molecules. 
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Fig. 1 Schematics of (a) MD model, (b) 

a method to make a quasimolecule, and 

(c) QMD model.

Recently, the alternative approaches have been 

developed that couples the atomistic and continuum 

approaches. One such approach to make coupling of 

length scales (CLS) is suggested by Abraham, 

Broughton, Bernstein and Kaxiras(2). In that approach, 

all single scale simulations run at the same time, 

while dynamically transferring and receiving relevant 

information from the other single scale simulations. 

Other approach, the most successful and best‐known 
implementation, is the quasicontinuum method by 

Tadmor, Ritiz and Philips(3). The main idea of this 

study is to couple atomistic modeling and the 

continuum approach by connecting the adaptive finite 

element procedure and atomistic evaluation of the 

potential energy of the system. Park, Karpov and Liu 

also suggest an approach to couple length scales(4). In 

this approach, by using a projection operator to 

decompose the displacement field into orthogonal 

coarse and fine scales, they are able to derive a 

coupled set of equations of motion describing the 

evolution of the MD and FE systems. Another 

method combining MD and FEM for silicon is 

proposed by Izumi, Kawakami and Sakai(5). For 

simultaneous simulation, isoparametric element 

embedding the combined atoms was used to 

exchange displacement information.

However, these alternative approaches still have 

problems to connect two approaches because of the 

difference of basic assumptions, continuum and 

atomistic modeling. In addition, the movement of 

each atom during material deformation is prone to 

cause the distorted elements producing numerical 

error at the connected area. 

Recently, Greenspan suggests a new approach, 

quasimolecular dynamics (QMD), to model real size 

material. In quasimolecular dynamics, atoms (or 

molecules) are aggregated into large units, called 

virtual quasimolecules(6). Greenspan, Choi and Ryu(7), 

Kim and Park(8), and Kim et al(9)  have modeled 

material deformation successfully. The main 

advantages of QMD are time saving and the inactive 

movement of each quasimolecule since the weight of 

quasimolecule is rather heavier than that of atom.

In this paper, we explore the possibility to make 

seamless coupling of quasimolecular dynamics to 

molecular dynamics. More detail process will be 

discussed in next section.
 

2. Computational Modeling

2.1 MD modeling

Let us consider a rectangular Cu‐plate with about 
43.06(Å)×66.06(Å) that has step shape at both sides 

like Figure 1(a). The step shape is chosen to make 

the same geometry with the quasimolecular model. 

This plate consists of 512 atoms (16 atoms and 32 

atom lines). A 6‐12 Lennard‐Jones potential for two 
copper atoms r(Å) apart is given by,

     




 



 
 




           (1)

where σmd is the distance when φmd(r)=0, and εmd is 

the cohesive energy. The least‐square fitted values for 
the Morse potential of copper are σmd=2.19(Å) and ε

md=3.15×10
3(gÅ2/s2). From this equation, the force F 

interacting between two atoms can be derived by the 

differentiation of φ(r) as follows
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The minimum results when F(r)=0, that is, at 

req(md)=2.46Å. 

Fig. 2 Schematics of MD and 

QMD coupled model.

2.2 QMD modeling

It is assumed that the structure of Cu 

quasimolecules is Faced Centered Cubic (FCC) as is 

in reality. It is also assumed that 16 atoms with 4 

atoms×4 atom lines are treated as a quasimolecule 

(refer Figure 1(b)). Hence, the equilibrium distance 

req(qmd)=9.84Å equal to 4 times of req(md). Then the 

resulting arrangement is shown as in Figure 1(c). The 

total number of quasimolecules in the plate is 32 (4 

quasimolecules×8 quasimolecules line). The total 

energy of the system of atoms at the equilibrium 

position is

               (3)

Here the measured Emd is ‐4.96×106(gÅ2/s2). Now 

we assume that the potential of quasimolecules (φqmd) 

has the same shape with that of atoms. Then, we 

have two unknowns εmd and σmd, and two equations, 

Emd= Eqmd and Fmd(rmd)= Fqmd(rqmd). From these 

conditions, two unknowns can be acquired as follows,

     

     (4)

and

    
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

     (5)

where N is the number of potential relationship 

among quasimolecules in system. The obtained values 

are εmd= 6.80×10
4(gÅ2/s2) and σmd= 8.77(Å) since N 

is 73. Lastly, the mass of quasimolecule is 16 times 

of that of Cu‐atom, in that, 1.69×10‐21(g).

2.3 MD and QMD coupling

To connect MD and QMD, the locations of 4th 

and 5th quasimolecules lines are filled with 128 

atoms instead of quasi‐molecules as shown in Figure 

2. When calculating the force between atoms and 

quasimolecules, quasimolecule is assumed as a bunch 

of atoms. The force acting on a molecule near 

quasimolecule is represented by the summation of 

forces acting on each molecule in the quasimolecules 

as follows

     




   ∈       (6)

All positions of each molecule in a quasimolecule 

are fixed when the position of quasimolecules is 

obtained.

3. Results and Discussion

In order to validate coupling MD and QMD, two 

models, MD and QMD, consisting of pure atoms and 

pure quasimolecules, and a coupled model consisting 

atoms and quasimolecules are subjected to tensile 

test. Constant velocity of 10m/s is given to 4 atom 

lines of MD model and 1 quasimolecule line at both 

ends until 34.63Å displacement. From this study, 

local strain, local stress and potential energy after 

deformation are measured. Note that relaxation 

process for thermal equilibrium is not applied to 
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Fig. 4 Measured strain distribution at final stage 

along the vertical direction of the model
these models for the convenience of calculation. Also 

note that the Verlet algorithm is chosen to save 

calculation time.

3.1 Potential Energy

Figure 3 depicts total potential energy as a 

function of strain. The potential energy for each step 

is measured while strain is applied. The total 

potential energy increases as the strain increase, since 

the averaged distance among atoms increases. In 

addition, the energies for the MD, QMD and coupled 

model are almost identical.

3.2 Strain distribution

To know the strain distribution on the models, 

local strains for each atom and quasimolecule are 

evaluated at the final stage. Then, the local strains 

are averaged for each line. The averaged strain for 

each line is represented in Figure 4 as a function of 

original Y coordinate of each line. The acquired 

strain is proportional to the original coordinate as can 

be expected. The plots for MD, QMD and coupled 

model show a relatively good agreement. However, at 

points A and B, the strain of the coupled model of 

MD and QMD is flat for the Y‐coordinate of atom 

lines. Since the atoms much lighter than 

quasimolecule move with the quasimolecules, the 

strain of MD part is similar to that of QMD part. 

Since the strain represents linear relationship with Y‐
position of each line except two points, the 

deformation is uniformly applied to the models.

4. Conclusion

In the present study, a new approach for 

simulating a nano‐scale material behavior is 

developed that connects the quasimolecular dynamics 

(QMD) and molecular dynamics (MD). In the Verlet 

algorithm to solve the system, the time to examine 

all pair separations is proportional to N2 where N is 

the total number of atom or quasimolecules in the 

system. Therefore, the proposed MD‐QMD coupled 

model is 256 times faster than pure MD model in 

simulating the nano‐scale material behavior for the 

case of the present study. It means the same results 

can be acquired with much smaller effort for 

modeling and time consuming.
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