• Title/Summary/Keyword: Model-ship correlation

Search Result 66, Processing Time 0.03 seconds

Comparison Study on the Propulsion Performance for Icebreaker with Synthetic ice and Refrigerated ice (합성얼음과 냉동얼음을 사용한 쇄빙선의 추진 성능 비교 연구)

  • Kim, Moon-Chan;Lim, Tae-Wook;Jo, Jun-Cheol;Chun, Ho-Hwan;Wang, Jung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.129-134
    • /
    • 2009
  • This paper reports on experimental investigations of self propulsion performance with synthetic (model) ice and refrigerated ice, which were conducted in a typical towing tank and ice tank, respectively. The main purpose of this research was to find the correlation between the selfpropulsion performance with synthetic ice in a typical towing tank and that with refrigerated ice in an ice tank. The different stresses between the synthetic ice and refrigerated ice influenced the self propulsion performance due to different ice and propeller interactions. A further study on the ice property variation for a self propulsion performance comparison is to be conducted in the near future.

Correlation of Marine Exploration-Survey Vessel Operation Factors and Grid-Type Operation Method through ES Model Analysis (환경스트레스 모델을 통한 해양탐사·조사선의 격자형 운항방식과 운항요인 상관관계에 관한 연구)

  • Park, Hyungoo;Park, Young-soo;Kim, Dae-won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.634-643
    • /
    • 2020
  • Because of the continuous increase in the demand for and importance of marine space, marine exploration and survey activities are being actively conducted in Korea actively. Because the marine survey vessels used for these activities have special operational patterns depending on the purpose and probe vessels, research on maritime traffic risk is required. In this study, an attempt was made to determine the correlation of each factor with the effect of marine exploration and survey vessel operation on maritime traffic. The status of ocean exploration and survey vessels in operation in Korea was identified, as well as the special operational conditions of some of the ocean physical probes. Generally, the number of exploration and survey vessels involved per hour, total vessel length(including exploration equipment), operation, interval distance of exploration as per plan, and marine traffic conditions(traffic volume and speed) can be classified as operating factors. To compare the results of the environmental stress, a maritime traffic flow simulation based on the "ES" Model was performed with each of the identified operating factors as independent variables. The results of the analysis confirmed that the environmental stress significantly changed in the order of traffic volume, ship length and speed. In addition, it was confirmed that the environmental stress is reduced when the operation course is set at an angle with the nearby maritime traffic flow. Accordingly, it can help reduce the operator's burden if the survey vessel operator understands nearby maritime traffic conditions and reflects them in the operation method when setting the operation plan.

The Inter-correlation Analysis between Oil Prices and Dry Bulk Freight Rates (유가와 벌크선 운임의 상관관계 분석에 관한 연구)

  • Ahn, Byoung-Churl;Lee, Kee-Hwan;Kim, Myoung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.289-296
    • /
    • 2022
  • The purpose of this study was to investigate the inter-correlation between crude oil prices and Dry Bulk Freight rates. Eco-friendly shipping fuels has being actively developed to reduce carbon emission. However, carbon neutrality will take longer than anticipated in terms of the present development process. Because of OVID-19 and the Russian invasion of Ukraine, crude oil price fluctuation has been exacerbated. So we must examine the impact on Dry Bulk Freight rates the oil prices have had, because oil prices play a major role in shipping fuels. By using the VAR (Vector Autoregressive) model with monthly data of crude oil prices (Brent, Dubai and WTI) and Dry Bulk Freight rates (BDI, BCI and (BP I) 2008.10~2022.02, the empirical analysis documents that the oil prices have an impact on Dry bulk Freight rates. From the analysis of the forecast error variance decomposition, WTI has the largest explanatory relationship with the BDI and Dubai ranks seoond, Brent ranks third. In conclusion, WTI and Dubai have the largest impact on the BDI, while there are some differences according to the ship-type.

An Experimental Study on the Slamming impact around Wedged type structure in accordance with the Weight and Height of the change (중량 및 높이변화에 따른 쐐기형 구조물 주위의 슬래밍 충격에 관한 실험적 연구)

  • Oh, Seung-Jin;Jo, Dae-Hawn
    • Journal of Navigation and Port Research
    • /
    • v.39 no.1
    • /
    • pp.77-82
    • /
    • 2015
  • Slamming means that the hull hits the waves and receives impact pressure. This slamming effect may cause harm to people and when you put the hull at risk. so it is very harmful for cargo safety. Therefor slamming impact pressure should be fully considered in ship designing. In this study the model of wedged type structure are produced aimed to simulate a free fall that the experiments were carried out on different weight and free fall height. The flow field has been obtained by 2-frame grey level cross correlation PIV(Particle Image Velocimetry) method and experiment was divided into water entry and water exit. The impact pressure of free fall structure by a pressure acquisition system apply to dewetron system. The angles between a model and the water surface are adapted $15^{\circ}$ respectively. The weight change of models was given as 1.5, 1.8 and 2.0kg. To study slamming phenomenon for free fall height the experiments were carried out by the free fall height of 100, 200 and 300mm. The experimental value of the impact pressure according to the changes in weight was increase impact pressure in proportion to the increase in weight and higher free falling height has also influenced the increase in impact pressures.

Assessment of whipping and springing on a large container vessel

  • Barhoumi, Mondher;Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.442-458
    • /
    • 2014
  • Wave induced vibrations increase the fatigue and extreme loading, but this is normally neglected in design. The industry view on this is changing. Wave induced vibrations are often divided into springing and whipping, and their relative contribution to fatigue and extreme loading varies depending on ship design. When it comes to displacement vessels, the contribution from whipping on fatigue and extreme loading is particularly high for certain container vessels. A large modern design container vessel with high bow flare angle and high service speed has been considered. The container vessel was equipped with a hull monitoring system from a recognized supplier of HMON systems. The vessel has been operating between Asia and Europe for a few years and valuable data has been collected. Also model tests have been carried out of this vessel to investigate fatigue and extreme loading, but model tests are often limited to head seas. For the full scale measurements, the correlation between stress data and wind data has been investigated. The wave and vibration damage are shown versus heading and Beaufort strength to indicate general trends. The wind data has also been compared to North Atlantic design environment. Even though it has been shown that the encountered wind data has been much less severe than in North Atlantic, the extreme loading defined by IACS URS11 is significantly exceeded when whipping is included. If whipping may contribute to collapse, then proper seamanship may be useful in order to limit the extreme loading. The vibration damage is also observed to be high from head to beam seas, and even present in stern seas, but fatigue damage in general is low on this East Asia to Europe trade.

Analysis of dependency structure between international freight rate index and crude oil price (국제운임지수와 원유가격의 의존관계 분석)

  • Kim, Bu-Kwon;Kim, Dong-Yoon;Choi, Ki-Hong
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.4
    • /
    • pp.107-120
    • /
    • 2019
  • Crude oil is a resource that is being used as a raw material in major industries, representing the price of the raw material market. It is also an important element that affects the shipping market in terms of fuel costs for freight vessels. As a result, crude oil and freight rates are closely related. Therefore, from January 2009 to June 2019, this study analyzed the dependency structure between oil price (WTI) and freight rates (BDI, BCI, BPI, BSI, and BHI) using daily data. The main results are summarized as follows. First, according to the copula results, survival Gumbel copula in WTI-BDI, Clayton copula in WTI-BCI, Survival Joe copula in WTI-BPI, Joe copula in WTI-BSI, and survival Gumbel copula in WTI-BHI were selected as the best-fitted model. Second, looking at Kendall's tau correlation, there is a positive correlation between BDI and oil price. Furthermore, freight rate index (BCI, BPI, BSI) and oil price show positive dependencies. In particular, the strongest dependence was found in BCI and oil price returns. However, BHI and oil price show a negative dependency. Third, looking at the tail-dependency structure, a pair between oil price and BDI, BCI showed a lower tail-dependency. The pair between oil price and BSI showed the upper tail-dependency.

A Study on the Advancement Structure Model of Maritime Safety Information System(GICOMS) using FSM (FSM을 이용한 해양안전정보시스템의 고도화 구조모델 연구)

  • Ryu, Young-Ha;Park, Kark-Gyei;Kim, Hwa-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.337-342
    • /
    • 2014
  • This paper is aims to build the advancement structural model of GICOMS through identification of required system and improvement for implementation of e-Navigation. We derived nine improvement subject for model of advanced GICOMS through the analysis of problems for GICOMS and brainstorming with expert in the maritime safety. And we analyzed the structure of nine improvement subject using by FSM(Fuzzy Structural Modeling) method, and proposed a structural model that to grasp the correlation between elements. As a result, we found out that "advancement of GICOMS" is the final goal, and "improvement a system of information production", "improvement a scheme of information providing", "linkage between GICOMS and VTS" and "building global networks for safety cooperation" are located lowest level. Especially, "advancement of GICOMS" is influenced by "advancement function of VMS" and "Activation of usage" on middle level. We suggested that utilizing state-of-the-art IT facilities, equipment and expertise to improve and enhance the user-centered transition such as maritime workers for advancement of GICOMS based on proposed structure model.

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).