• 제목/요약/키워드: Model-based fault detection

검색결과 263건 처리시간 0.027초

에이전트들 간의 협력을 통한 RBR 기반의 네트워크 구성 장애 관리 알고리즘 (RBR Based Network Configuration Fault Management Algorithms using Agent Collaboration)

  • 조광종;안성진;정진욱
    • 정보처리학회논문지C
    • /
    • 제9C권4호
    • /
    • pp.497-504
    • /
    • 2002
  • 본 논문에서는 시스템의 네트워크 구성 장애를 관리하기 위한 관리 모델과 에이전트들 간의 협력을 통한 장애의 진단 및 복구 알고리즘을 제시하고 있다. 관리 모델에는 장애의 검출, 진단, 복구의 세 단계로 이루어지며 각각은 RBR(Rule-Based Reasoning)에 기반으로 하여 규칙기반 지식 데이터베이스에 있는 규칙을 이용하여 네트워크의 구성 장애를 진단하고 복구한다. 또한 관리 도메인 상의 네트워크에 분포하고 있는 여러 에이전트들 간의 협력을 통하여 시스템 단독으로는 해결할 수 없는 복잡한 문제를 해결하거나 네트워크의 상황까지 고려하여 진단하고 복구함으로써 효율적인 시스템의 네트워크 구성 관리 알고리즘을 제시하고 있다.

신경회로망을 이용한 동적 문턱값에 의한 비선형 시스템의 고장진단 (Fault Diagnosis of Nonlinear Systems Based on Dynamic Threshold Using Neural Network)

  • 소병석;이인수;전기준
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.968-973
    • /
    • 2000
  • Fault diagnosis plays an important role in the performance and safe operation of many modern engineering plants. This paper investigates the problem of fault detection using neural networks in dynamic systems. A general framework for constructing a nonlinear fault detection scheme for nonlinear dynamic systems containing modeling uncertaintly is proposed. The main idea behind the proposed approach is to monitor the physical system with an off -line learning neural network and then to approximate the upper and lower thresholds of acceleration of the nominal system with the model-based threshold(ThMB) method, The performance of the proposed fault detection scheme is investigated through simulations of a pendulum with uncertainty.

  • PDF

A Dissimilarity with Dice-Jaro-Winkler Test Case Prioritization Approach for Model-Based Testing in Software Product Line

  • Sulaiman, R. Aduni;Jawawi, Dayang N.A.;Halim, Shahliza Abdul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.932-951
    • /
    • 2021
  • The effectiveness of testing in Model-based Testing (MBT) for Software Product Line (SPL) can be achieved by considering fault detection in test case. The lack of fault consideration caused test case in test suite to be listed randomly. Test Case Prioritization (TCP) is one of regression techniques that is adaptively capable to detect faults as early as possible by reordering test cases based on fault detection rate. However, there is a lack of studies that measured faults in MBT for SPL. This paper proposes a Test Case Prioritization (TCP) approach based on dissimilarity and string based distance called Last Minimal for Local Maximal Distance (LM-LMD) with Dice-Jaro-Winkler Dissimilarity. LM-LMD with Dice-Jaro-Winkler Dissimilarity adopts Local Maximum Distance as the prioritization algorithm and Dice-Jaro-Winkler similarity measure to evaluate distance among test cases. This work is based on the test case generated from statechart in Software Product Line (SPL) domain context. Our results are promising as LM-LMD with Dice-Jaro-Winkler Dissimilarity outperformed the original Local Maximum Distance, Global Maximum Distance and Enhanced All-yes Configuration algorithm in terms of Average Fault Detection Rate (APFD) and average prioritization time.

MATLAB을 이용한 송전선로의 아크사고 검출 및 고장거리 추정 소프트웨어 개발에 관한 연구 (A Study on the Defection of Arcing Faults in Transmission Lines and Development of Fault Distance Estimation Software using MATLAB)

  • 김병천;박남옥;김동수;김길환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권4호
    • /
    • pp.163-168
    • /
    • 2002
  • This paper present a new verb efficient numerical algorithm for arcing faults detection and fault distance estimation in transmission line. It is based on the fundamental differential equations describing the transients on a transmission line before, during and alter the fault occurrence, and on the application of the "Least Error Squares Technique"for the unknown model parameter estimation. If the arc voltage estimated is a near zero, the fault is without arc, in other words the fault is permanent fault. If the arc voltage estimated has any high value, the faust is identified as an fault, or the transient fault. In permanent faults case, fault distance estimation is necessary. This paper uses the model of the arcing fault in transmission line using ZnO arrestor and resistance to be implemented within EMTP. One purpose of this study is to build a structure for modeling of arcing fault detection and fault distance estimation algorithm using Matlab programming. In this paper, This algorithm has been designed in Graphic user interface(GUI).

웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단 (Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets)

  • ;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.726-735
    • /
    • 2009
  • 이 논문에서는 신호 모델에 기반하여 유도전동기의 고장 검출 및 고장 진단을 위한 새로운 시스템을 제안한다. 산업현장에 적용하는 기존의 제품들은 신호가 문턱치를 넘어면 고장을 검출하는 단순한 알고리듬을 가지고 있어 고장의 유형이나 고장을 예측하는데 문제가 있다. 이 논문에서는 이러한 문제들을 해결하기 위한 시스템을 제안한다. 이 시스템은 고장 검출 과정과 고장 진단 과정으로 구성되며, 고장 검출 과정은 기계 신호음들이 웨이블렛 필터뱅크를 통과한 후 웨이블렛 계수들의 분산과 상관도를 분석하여 고장을 검출한다. 고장 진단 과정은 패턴분류기술을 적용하여 고장의 유형을 진단하게 된다. 대표적인 유도전동기 고장 유형들로서는 불평형, 미스얼라이먼트, 그리고 베어링 루스 등이 있으며, 이러한 유형들은 제안하는 시스템에서 분석되고 진단을 받게 된다. 제안하는 시스템에 적용한 결과 상관도를 이용한 방법은 78 %, 분산을 이용한 방법은 95 % 이상의 고장진단율을 보이는 우수한 결과를 나타내었다.

가정용 고분자전해질 연료전지 공기공급시스템의 모델 기반 고장 검출 기술 (Model-based Fault Detection Method for the Air Supply System of a Residential PEM Fuel Cell)

  • 원진연;김민진;이원용;최윤영;홍종섭;오환영
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.556-566
    • /
    • 2019
  • Recently, as the supply of residential polymer electrolyte membrane fuel cells (PEMFCs) increases, the durability and lifetime of the PEMFC system are becoming important. The related studies have been mainly focused on the durability and lifetime of materials while the research on the durability and maintenance of the system level is insufficient. In this paper, a model-based fault detection method is developed considering an air supply system that is dominant to the system performance and efficiency. A commercial 1 kW residential fuel cell system is built, and experiments are conducted under various operation loads and states (normal, 6 faults). From the experimental data, nominal models and residuals are generated. With the residual pattern obtained from real-time data, the detection and classification of various faults can be possible. The technical importance of this paper is to minimize extra sensor installation by using the empirical model rather than a complex mathematical model, and to decrease the number of models by using the applicable model at three loads. Finally, the model-based fault detection method for the air supply system of a PEMFC is established and is expected to be applicable to other subsystems.

Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks

  • Huang, Hai-Bin;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.1031-1053
    • /
    • 2016
  • The health conditions of in-service civil infrastructures can be evaluated by employing structural health monitoring technology. A reliable health evaluation result depends heavily on the quality of the data collected from the structural monitoring sensor network. Hence, the problem of sensor fault diagnosis has gained considerable attention in recent years. In this paper, an innovative sensor fault diagnosis method that focuses on fault detection and isolation stages has been proposed. The dynamic or auto-regressive characteristic is firstly utilized to build a multivariable statistical model that measures the correlations of the currently collected structural responses and the future possible ones in combination with the canonical correlation analysis. Two different fault detection statistics are then defined based on the above multivariable statistical model for deciding whether a fault or failure occurred in the sensor network. After that, two corresponding fault isolation indices are deduced through the contribution analysis methodology to identify the faulty sensor. Case studies, using a benchmark structure developed for bridge health monitoring, are considered in the research and demonstrate the superiority of the new proposed sensor fault diagnosis method over the traditional principal component analysis-based and the dynamic principal component analysis-based methods.

슬라이딩 모드 관측기 기반 전지형 크레인의 조향입력 고장검출 알고리즘 (Sliding Mode Observer-based Fault Detection Algorithm for Steering Input of an All-Terrain Crane)

  • 오광석;서자호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.30-36
    • /
    • 2017
  • This paper presents a sliding mode observer-based fault detection algorithm for steering inputs of an all-terrain crane. All-terrain cranes with multi-axles have several steering modes for various working purposes. Since steering angles at the other axles except the first wheel are controlled by using the information of steering angle at the first wheel, a reliable signal of the first axle's steering angle should be secured for the driving safety of cranes. For the fault detection of steering input signal, a simplified crane model-based sliding mode observer has been used. Using a sliding mode observer with an equivalent output injection signal that represents an actual fault signal, a fault signal in steering input was reconstructed. The road steering mode of the crane's steering system was used to conduct performance evaluations of a proposed algorithm, and an arbitrary fault signal was applied to the steering angle at the first wheel. Since the road steering mode has different steering strategies according to different speed intervals, performance evaluations were conducted based on the curved path scenario with various speed conditions. The design of algorithms and performance evaluations were conducted on Matlab/Simulink environment, and evaluation results reveal that the proposed algorithm is capable of detecting and reconstructing a fault signal reasonably well.

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin;Kim, Jong-Myon
    • Advances in robotics research
    • /
    • 제2권1호
    • /
    • pp.99-112
    • /
    • 2018
  • The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.

신경회로망기반 다중고장모델에 의한 비선형시스템의 고장진단 (Fault Diagnosis of the Nonlinear Systems Using Neural Network-Based Multi-Fault Models)

  • 이인수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.115-118
    • /
    • 2001
  • In this paper we propose an FDI(fault detection and isolation) algorithm using neural network-based multi-fault models to detect and isolate single faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output.

  • PDF