• 제목/요약/키워드: Model-based Fault Diagnosis

검색결과 220건 처리시간 0.021초

웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단 (Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets)

  • ;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.726-735
    • /
    • 2009
  • 이 논문에서는 신호 모델에 기반하여 유도전동기의 고장 검출 및 고장 진단을 위한 새로운 시스템을 제안한다. 산업현장에 적용하는 기존의 제품들은 신호가 문턱치를 넘어면 고장을 검출하는 단순한 알고리듬을 가지고 있어 고장의 유형이나 고장을 예측하는데 문제가 있다. 이 논문에서는 이러한 문제들을 해결하기 위한 시스템을 제안한다. 이 시스템은 고장 검출 과정과 고장 진단 과정으로 구성되며, 고장 검출 과정은 기계 신호음들이 웨이블렛 필터뱅크를 통과한 후 웨이블렛 계수들의 분산과 상관도를 분석하여 고장을 검출한다. 고장 진단 과정은 패턴분류기술을 적용하여 고장의 유형을 진단하게 된다. 대표적인 유도전동기 고장 유형들로서는 불평형, 미스얼라이먼트, 그리고 베어링 루스 등이 있으며, 이러한 유형들은 제안하는 시스템에서 분석되고 진단을 받게 된다. 제안하는 시스템에 적용한 결과 상관도를 이용한 방법은 78 %, 분산을 이용한 방법은 95 % 이상의 고장진단율을 보이는 우수한 결과를 나타내었다.

Fault Diagnosis of Variable Speed Refrigeration System Based on Current Information

  • Lee, Dong-Gyu;Jeong, Seok-Kwon;Hua, Li
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권4호
    • /
    • pp.137-144
    • /
    • 2008
  • This study deals with on-line fault detection and diagnosis(FDD) for heat exchangers of a variable speed refrigeration system(VSRS) based on current information. The current residual which is the difference between real detected current from current sensors and estimated current from no fault model was utilized to diagnose faults of the heat exchangers. Comparing to the conventional FDD of constant refrigeration system based on temperature and pressure information, the suggested FDD method shows better robustness to the VSRS which has a feedback control loop. Moreover the suggested method can be expected more precise and faster diagnosis of faults about heat exchangers. Throughout some experiments, the validity of the method was verified.

Electro-Mechanical Brake의 클램핑력 제어를 위한 전류 및 힘 센서 고장 검출 알고리즘 개발 (Current and Force Sensor Fault Detection Algorithm for Clamping Force Control of Electro-Mechanical Brake)

  • 한광진;양이진;허건수
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1145-1153
    • /
    • 2011
  • EMB (Electro-Mechanical Brake) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor current and force sensor faults in EMB systems. A state-space model for the EMB is derived including faulty signals. The fault diagnosis algorithm is constructed using the analytical redundancy method. Observer is designed for the EMB and the fault detectability condition is examined based on the residual analysis. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.

비선형 보일러 시스템에서의 이상허용제어 (Fault Tolerant Control for Nonlinear Boiler System)

  • 윤석민;김대우;이명의;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF

Fault Detection and Diagnosis of the Deaerator Level Control System in Nuclear Power Plants

  • Kim Kyung Youn;Lee Yoon Joon
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.73-82
    • /
    • 2004
  • The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is located above the feedwater pumps. The feedwater pumps take the water from the deaerator storage tank, and the net positive suction head(NSPH) should always be ensured. To secure the sufficient NPSH, the deaerator tank is equipped with the level control system of which level sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a model-based fault detection and diagnosis(FDD) is introduced in this study. The dynamic control model is formulated from the relation of input-output flow rates and liquid-level of the deaerator storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by applying the operation data of Yonggwang Units 3 & 4.

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.

태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술 (Ubiquitous Networking based Intelligent Monitoring and Fault Diagnosis Approach for Photovoltaic Generator Systems)

  • 조현철;심광열
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1673-1679
    • /
    • 2010
  • A photovoltaic (PV) generator is significantly regarded as one important alternative of renewable energy systems recently. Fault detection and diagnosis of engineering dynamic systems is a fundamental issue to timely prevent unexpected damages in industry fields. This paper presents an intelligent monitoring approach and fault detection technique for PV generator systems by means of artificial neural network and statistical signal detection theory. We devise a multi-Fourier neural network model for representing dynamics of PV systems and apply a general likelihood ratio test (GLRT) approach for investigating our decision making algorithm in fault detection and diagnosis. We make use of a test-bed of ubiquitous sensor network (USN) based PV monitoring systems for testing our proposed fault detection methodology. Lastly, a real-time experiment is accomplished for demonstrating its reliability and practicability.

신경회로망기반 다중고장모델에 의한 비선형시스템의 고장진단 (Fault Diagnosis of the Nonlinear Systems Using Neural Network-Based Multi-Fault Models)

  • 이인수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.115-118
    • /
    • 2001
  • In this paper we propose an FDI(fault detection and isolation) algorithm using neural network-based multi-fault models to detect and isolate single faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output.

  • PDF

Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks

  • Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.252-261
    • /
    • 2014
  • A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.

스마트 팩토리에서 머신 러닝 기반 설비 장애진단 예측 시스템 (A Predictive System for Equipment Fault Diagnosis based on Machine Learning in Smart Factory)

  • 조재형;이재오
    • KNOM Review
    • /
    • 제24권1호
    • /
    • pp.13-19
    • /
    • 2021
  • 최근 산업 분야에서는 공장 자동화 뿐만 아니라 장애 진단/예측을 통해 고장/사고를 사전에 방지하여 생산량을 극대화하기 위한 연구가 진행되고 있으며, 이를 구성하기 위해 많은 양의 데이터 축적을 위한 클라우드 기술, 데이터 처리를 위한 빅 데이터 기술, 그리고 데이터 분석을 쉽게 진행하기 위한 AI(Artificial Intelligence)기술이 도입되고 있다. 또한 최근에는 장애 진단/예측의 발전으로 인해 설비 유지보수(PM: Productive Maintenance) 방식도 정기적으로 설비를 유지보수 하는 방식인 TBM(Time Based Maintenance)에서 설비 상태에 따라 유지보수 하는 방식인 CBM(Condition Based Maintenance)을 조합하는 방식으로 발전하고 있다. CBM 기반 유지보수를 수행하기 위하여 설비의 상태(condition)의 정의와 분석이 필요하다. 따라서 본 논문에서는 머신 러닝(Machine Learning) 기반의 장애 진단을 위한 시스템 및 데이터 모델(Data Model)을 제안하며, 이를 기반으로 장애를 사전 예측한 사례를 제시하고자 한다.