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Abstract—A Bayesian network (BN) based fault 

diagnosis framework for semiconductor etching 

equipment is presented. Suggested framework 

contains data preprocessing, data synchronization, 

time series modeling, and BN inference, and the 

established BNs show the cause and effect 

relationship in the equipment module level. 

Statistically significant state variable identification 

(SVID) data of etch equipment are preselected using 

principal component analysis (PCA) and derivative 

dynamic time warping (DDTW) is employed for data 

synchronization. Elman’s recurrent neural networks 

(ERNNs) for individual SVID parameters are 

constructed, and the predicted errors of ERNNs are 

then used for assigning prior conditional probability 

in BN inference of the fault diagnosis. For the 

demonstration of the proposed methodology, 300 mm 

etch equipment model is reconstructed in subsystem 

levels, and several fault diagnosis scenarios are 

considered. BNs for the equipment fault diagnosis 

consists of three layers of nodes, such as root cause 

(RC), module (M), and data parameter (DP), and the 

constructed BN illustrates how the observed fault is 

related with possible root causes. Four out of five 

different types of fault scenarios are successfully 

diagnosed with the proposed inference methodology.   

 

Index Terms—Fault diagnosis, bayesian inference, 

fault detection and classification   

I. INTRODUCTION 

Semiconductor manufacturing processes became more 

complex over the decades due to the continuous needs 

for smaller and higher density chips. The advancement in 

semiconductor manufacturing technology increases the 

demand of higher level of manufacturing process control 

with improved precision for satisfying narrower process 

margins in manufacturing. In process control, statistical 

process control (SPC) is widely used for finding the 

source of variation in a given process to maintain 

consistent product quality, but it holds the lack of 

timeliness due to the post process metrology. When a 

fault is detected, the process is halted, and a corrective 

action needs to be promptly taken with identifying the 

actual source of variation in the equipment. Correct 

diagnosis can contribute to reducing equipment 

downtime as compared to the traditional ‘hit and trial’ 

approach to identify the source of fault. Any delay in 

process control in high volume manufacturing may cause 

extended machine down time, which would affect the 

production yield as well as manufacturing throughput. 

Therefore, the detection of an incipient fault run as well 

as its classification is critical to improve the production 

yield in high volume semiconductor manufacturing. 

Semiconductor manufacturing equipment consists of a 

few hundred built-in sensors for monitoring the tool 

status and the process. Sensory data contains full of 

useful information of the equipment status and the 

corresponding process, and it can be utilized for the 

detection of an incipient fault on wafer-in-process; 

however, the handling of large amount of equipment data 

is arduous. In our previous research, we demonstrated the 

usefulness of artificial intelligence algorithm with 
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evidential reasoning as a promising candidate for a 

method of equipment fault detection and classification 

(FDC) [1]. Goodlin et al. have used fault-specific control 

charts to detect and classify faults in an etcher using FDC 

data [2]. Ison et al. have presented a tree based modeling 

technique to classify faults [3]. Barios et al. have 

presented an auto-associative neural network based 

approach for diagnosing faults [4]. Similarly, Baluja et al. 

have proposed five artificial neural networks based 

techniques for the purpose [5]. However, limited physical 

understanding of the process equipment and the complex 

operational relationship in sub-system level associated 

with the process is considered in previous research.  

In this research, we propose a Bayesian network (BN) 

based inference methodology for fault diagnosis of 

semiconductor manufacturing equipment. Diagnostic 

inference was performed based on a cause and effect 

analysis with physical understanding of 300 mm wafer 

manufacturing equipment. In data preprocessing phase, 

the statistically significant state variable identifier 

(SVID) were selected through principal component 

analysis (PCA) and synchronized using the derivative 

dynamic time warping (DDTW) algorithm. Elman’s 

recurrent neural network (ERNN) was employed for the 

prediction of time series data and the assignment of 

conditional probabilities in BNs, and eventually fault 

diagnosis was demonstrated by the combination of fault 

conditional probabilities including expert knowledge and 

process information of the semiconductor manufacturing 

equipment. The rest of the paper is divided into four 

sections. 

Section II provides a theoretical background of BN 

inference. The proposed diagnostic methodology for RIE 

etcher is discussed in Section III. Section IV presents the 

implementation and fault diagnostics of the proposed 

technique using 300 mm etch equipment model which is 

reconstructed in subsystem levels. Finally, results and 

conclusion are provided in Section V. 

II. THEORETICAL BACKGROUND 

1. Bayesian Network 

 

A Bayesian network (BN) is one of the preferred 

methods for the inference of cause and effect relationship. 

BN, also known as probability or belief networks, is used 

for the representation of dependencies within a set of 

random variables in the form of a directed acyclic graphs 

where the nodes represent the random variables and the 

arrows represent the causal relationship between them [6]. 

The arrow leads from a node representing the cause 

variable to the node representing the effect variable. For 

all root nodes which have no parents, only unconditional 

prior probabilities are defined, while for all other nodes, 

the conditional probability distribution (CPD) in the form 

of a table is defined with respect to the occurrence of 

their parent nodes.  

Taking an example out of the semiconductor 

equipment, Fig. 1 shows a BN of a fault in gas delivery 

system. If a mass flow controller (MFC) is not calibrated 

correctly (represented by node A), it would allow more 

or less gas to flow into the chamber, which would be 

detected as fault in gas flow (represented by node B). 

The incorrect amount of gas flow will then affect the 

flow sensor reading of the total gas flow in the gas 

splitter, and this can result in a fault in its observation 

(represented by node C).  

Here the prior probability for root node A is defined as 

the unconditional probability ( ) ,P A  while CPDs for 

nodes B and C are defined as conditional probabilities 

with respect to the occurrence of their parents, ( )P B A  

and ( )P C B  respectively. These values are obtained 

from process knowledge and expert opinion. For any 

Bayesian network for a set of random variables 

{ }1 2 3, , , , ,iX X X X⋯  the joint probability of all 

variables in the network can be expressed as the product 

of the CPD of each node given its parents. 

Mathematically, 

 

   

 

One of the several advantages of the BN is, once the 

relationships between the variables are defined through 

the network structure and probabilities, inference can be 

 

 

Fig. 1. Example Bayesian Network for fault in gas. 
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performed. Inference is the procedure of finding the 

posterior probability of a specific variable in the network 

when exact values of other variables are provided. These 

known values of variables are called the evidences. The 

effect of the evidences propagates through the network, 

and incorporating this new information the BN computes 

the revised probability of each node in the network. This 

is equivalent to saying that the BN combines the newly 

found evidences from the prior information to obtain an 

improved judgment for the status of each variable. For a 

diagnostic problem, the evidences are actually the 

symptoms observed in the system, and to diagnose or 

inference the root cause of the problem, BNs rely on the 

Bayes’ theorem which is mathematically defined as 

 

   

 

2. Inference Example 

 

In order to demonstrate how a BN can be used for fault 

diagnosis, let’s consider a simple example as presented in 

Fig. 1. Suppose the prior probability for node A, 

P(A=True)=0.3 i.e. the probability of MFC mis-

calibration is 0.3. For the nodes B and C, CPDs are 

represented in the form of conditional probability tables 

as shown in Table 1. 

At this point, we can calculate the marginal probability 

for each node which is the simple probability of that 

node, can be found using the formula for marginal 

probability 

 

   

 

Using this equation we get P(A)=0.3, P(B)=0.31 and 

P(C)=0.317. Now let's suppose that the evidence was 

found that the total flow of gas in splitter is not normal. 

This implies that we have (C=True). Now using this new 

evidence the posterior probability of node B and C can be 

found making use of the Bayes’ theorem as 

 

   

 

 

We infer that MFC has been out of calibration with a 

probability of 0.624. This example shows how Bayesian 

networks can be very useful to model and diagnose a 

fault diagnosis problem, and in this manner, we can have 

diagnostic inference for fault diagnosis with evidence 

combination. 

III. DIAGNOSTIC METHODOLOGY  

1. System Apparatus 

 

We employed a capacitive coupled plasma-reactive 

ion etching (CCP-RIE) system for diagnostic inference 

study. RIE is one of the most important processes in 

semiconductor device manufacturing, where reactive 

ions are used to selectively remove layers of solid films 

on the a wafer [7]. A simplified schematic of the RIE 

etcher is shown in Fig. 2. The wafer is placed on an 

electrostatic chuck (E-Chuck) in vacuum chamber, where 

process gases are provided inside the chamber. Two 

parallel plates at the top and bottom of the chamber in 

capacitive coupled plasma (CCP) system act as 

electrodes and are connected to an RF generator which is 

used to excite the gas to generate plasma. The smaller 

size of the powered electrode as compared to the 

grounded electrode causes a negative DC bias at the 

powered electrode, which results in high energy positive 

 
Table 1. CPT’S defined for the nodes B and C 

A P(B=True) P(B=False) B P(C=True) P(C=False) 

True 0.80 0.10 True 0.80 0.10 

False 0.20 0.90 False 0.20 0.90 
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ion bombardment on the wafer placed at the electrode. 

This bombardment etches the target layer on the wafer.  

Occurrence of any fault in RIE etcher may damage the 

wafers being processed. In case of such a fault in the 

process or equipment, it must be detected to avoid 

scraping of more wafers and avoid further misprocessing, 

but another important issue is that the equipment must be 

properly diagnosed to eliminate cause of the fault. A 

diagnostic system that could detect faults and properly 

classify them is critical to enhance the manufacturing 

effectiveness. When a fault occurs in RIE in reality, the 

effects of a fault can be observed in more than one part 

of the system, and this makes it difficult to just point out 

the exact root cause. In order to simplify the system we 

have divided the system into six modules as shown in Fig. 

2, such as RF power module, gas delivery module, 

process chamber module, vacuum module, E-chuck 

module and transfer module. The RF power module 

consists of all power related components in the etcher, 

and the key components are RF generator and the 

matcher. All components of the system related to 

delivery of gases, for example the MFCs and flow 

splitters, into the chamber are included in the gas 

delivery module. Similarly, the process chamber module 

includes the components dealing with the process. 

Vacuum module contains components that are related to 

vacuum generation and control. Likewise, components in 

the system that are associated with the E-chuck are 

included in the E-chuck module. Components that deal 

with the transfer of wafers to and from the process 

chambers are included in the transfer module. This 

categorization makes it easier to analyze the cause and 

effect of the system in one level down at the sub-system 

(or module) level. 

 

2. Cause and Effect Analysis 

 

In order to design a fault diagnosis system, as many 

faults that could occur in the system must be taken into 

consideration as possible in order avoid misleading result. 

Hence we construct a fishbone diagram which is a good 

way to carefully analyze, determine and list up all the 

potential causes of a problem or their effects in visual 

representation. It also makes way for generating better 

model for the diagnosis of faults. The fishbone diagram 

constructed for faults in RIE is shown in Fig. 3. The main 

bone represents the faults in semiconductor etch 

equipment. The branches represent sub-system level 

modules. The smaller bones branching from the sub-

bones represent the causes of faults within each module. 

The construction of fish-bone diagram involved 

brainstorming by incorporating equipment, process and 

expert knowledge. 

 

3. Construction of Bayesian Network 

 

In order to make use of a Bayesian network for a given 

problem, the first step is defining the network structure. 

Structure of a Bayesian network can be learned from data 

for some problems, but it generally relies on process, 

equipment and expert knowledge for diagnosing a fault 

in semiconductor equipment. We propose a three layer 

Bayesian network for the diagnosis of faults using SVID 

data as shown in Fig. 4. The top layer corresponds to the 

root causes, the middle layer corresponds to faults 

observed in modules, and the bottom layer corresponds 

to faults observed in SVID data parameters. The 

evidence would be added to the bottom layer, which can 

be inferred to find the most probable root cause from the 

top layer. 

Following this framework, we defined a structure of 

cause and effect diagram in the semiconductor etcher in 

Fig. 5 for which the node descriptions are provided in 

Table 2. Each module has been assigned as a node, 

representing the fault observed in that module and is 

connected to its child node of all the root nodes for the 

respective modules. Next the child nodes of each module 

 

Fig. 2. Schematic of RIE Etcher System divided into modules. 
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node represent the fault observed in SVID data as a result 

of direct or indirect effect of fault occurrence within that 

module. We tried to model the relationships between 

different causes and their effects. The network shows 

direct and indirect effects of faults that could appear in 

different modules, but it ends up being observed on some 

common set of parameters. This shows the complexity of 

the intertwined components of the system that make it 

difficult to model and diagnose. The given BN is a 

general network that could be applied to any kind of etch 

system with little or no changes because the faults and 

relationships are more or less the same in all kinds of 

plasma etch systems. This can be considered as 

generalized framework which can be extended to 

diagnose any fault in other kinds of semiconductor 

equipment as well. For example, being very similar to 

plasma etch equipment, the plasma enhanced chemical 

vapor deposition (PECVD) systems can also employ this 

framework for diagnosis of faults. 

  

Fig. 3. Fishbone diagram for faults in CCP-RIE. 

 

 

Fig. 4. Proposed three layer design of Bayesian network. 

 

 

Fig. 5 Bayesian network for the fault diagnosis in RIE etch equipment. 
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IV. IMPLEMENTATION 

1. Data Acquisition and Preprocessing 

 

Data used for the purpose of this research was SVID 

data, acquired from Applied Materials’ DPS-II Centura 

dielectric etcher. It consisted of 10 healthy runs and 

intentionally induced 5 faulty runs with different types of 

faults. The faulty runs are suggested by equipment 

engineers based on their most frequent experience, and 

they are presented in Table 3. Our purpose is to diagnose 

these faults to demonstrate and assess the functionality of 

the proposed technique. The data was composed of 55 

parameters corresponding to different modules of the 

equipment. This data is used for the construction of BN 

and the evidence generation for inference of faults. The 

original data consisted of 55 parameters collected at a 

frequency of 10 Hz. For an efficient use of SVID data in 

a fault diagnosis system, the data must be reduced by 

selecting only those parameters that carry useful 

information. For this purpose, we made use of principle 

component analysis (PCA) which can be used to select 

statistically most significant parameters [8].  

Out of the 55 parameters, 15 parameters represented in 

Table 4, were selected by PCA. As each parameter in the 

SVID data has its own range of values; therefore, it is 

appropriate to normalize the data to a fixed range [0, 1] 

before subsequent steps. Apart from normalization 

another issue is that SVID data collected for various runs 

is not synchronized i.e. the number of observations for 

each run varies due to slight differences in duration of 

each run. This problem must be addressed before the data 

can be used. Hence, derivative dynamic time warping 

(DDTW) algorithm was employed to synchronize the 

data [9]. 

 

2. Bayesian Inference 

 

For the Bayesian inference of this diagnostic problem, 

using the general network in Fig. 5, we define a BN 

structure dedicated for this problem as shown in Fig. 6. 

The node description for the network is provided in 

Table 5. BN structure design and the subsequent steps 

Table 2. Nodes Description for the Network of Fig. 5 

Node Description Node Description 

RC1 Bleed valve leaking DP3 Vacuum valve position 

RC2  Vacuum valve  DP4  Robot arm position 

RC3  Vacuum sensor  DP5  Robot arm angles  

RC4 Poor vacuum conduction  DP6  Transfer module pressure 

RC5 Throttle valve  DP7  Helium pressure  

RC6 Leakage in transfer chamber DP8  Helium leak rate  

RC7  TR chamber V. valve leak DP9  Helium pressure set point 

RC8 TR chamber V. valve leak DP10  Helium flow rate 

RC9 Robotic arm vibration  DP11  E-chuck voltage reading 

RC10 Robotic arm angles  DP12  E-chuck current reading 

RC11 E-chuck bias power failure DP13  Wafer temperature  

RC12 Helium gas flow failure  DP14  Source forward reading  

RC13 Faulty temperature sensor  DP15  Bias forward reading  

RC14 Power loss in coaxial cable DP16  Source reflected reading 

RC15 RF Cable loose connection DP17  Bias reflected reading  

RC16 Matcher fault  DP18  RF Matcher: Cap. reading 

RC17 MFC miscalibration  DP19  RF Matcher: Current 1  

RC18 Gas line leakage  DP20  RF Matcher: Current 2  

RC19 Gas cylinder empty  DP21  RF Matcher: Series  

RC20 Gas control valve failure  DP22  RF Matcher: Shunt  

RC21 Chamber wall deposition  DP23  RF probe: voltage  

RC22 Particles  DP24  RF probe: current  

RC23 Chamber leak  DP25  RF probe: phase  

RC24 Gasket/O-ring wear out  DP26  RF probe: Vpp  

M1 Vacuum Module  DP27  RF probe: DC bias  

M2 Transfer Module  DP28  TGV Valve position  

M3 E-chuck Module  DP29  Pressure  

M4 RF Module  DP30  Gas flow rate  

M5 Gas Delivery Module  DP31  Flow splitter: Flow 1  

M6 Process Chamber Module  DP32  Flow splitter: Flow 2  

DP1 Bleed valve position  DP33  Flow splitter: Total flow 

DP2 Throttle valve position   

 

Table 3. Faults added in different runs 

Run ID Fault Induced 

Exp.1 -1% MFC conversion shift 

Exp.2 +1% MFC conversion shift 

Exp.3 Source RF Cable: loss simulation 

Exp.4 Bias RF Cable: power delivered 

Exp.5 Added chamber leak by 1.3 mT/min 

 

Table 4. List of parameters selected through PCA for fault 

detection 

Par. Par. Name Par. Par. Name 

1 
Throttle Gate Valve 

Current 
9 RF Probe Phase 

2 RF Source Forward 10 E-chuck Voltage 

3 RF Matcher Current 1 11 Flow Splitter-Flow 1 

4 RF Matcher Current 2 12 Flow Splitter-Total Flow 

5 RF Bias Forward 13 Gas Flow-12 

6 RF Bias Shunt 14 RF Probe Vp-p 

7 RF Probe Voltage 15 RF Probe DC Bias 

8 RF Probe Current   
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were performed in GeNIe [10-12]. Next, the prior 

probabilities and conditional probabilities were added to 

the network. The prior probabilities of the root nodes, 

RC1-RC11 are determined using historical information 

and expert knowledge as shown in Table 6.  

Similarly, utilizing process and equipment information 

as well as expert knowledge we assign the conditional 

probabilities for the module nodes M1, M2 and M3 and 

for data parameter nodes DP1-DP13. The values for M1 

and DP1 are given as example in Tables 7 and 8 

respectively. This is a critical step and the performance 

of the diagnostic system depends on this information. 

Next step is adding the evidence for fault to the 

network. In order to generate fault evidence for the five 

faulty runs, Elman’s recurrent neural network (ERNN) 

models were employed, which consist of two-layer back 

propagation network with feedback connections from the 

hidden nodes to additional nodes, called the “context 

units” which contain the previous states of the hidden 

nodes [13]. The healthy runs were used for training the 

network for which the Levenberg Marquardt (LM) back-

propagation algorithm was used due to its better 

performance on time series data [14]. The number of 

hidden neurons was varied and the network for trained 

for fixed number of epochs to find the structure that gave 

the least amount training error as shown in Table 9. 

Once the network was trained for the prediction of one 

step ahead, it was applied on the faulty runs. The 

predicted and the actual observations were compared to 

find the root-mean-squared-error (RMSE). The 

normalized modeling results for the runs being diagnosed 

are summarized in Table 10. From the results of ERNN, 

we fixed a threshold of 0.45 to be the value above which 

an evidence of fault is considered to have been found. 

Values below this threshold are not considered as 

 

Fig. 6. Bayesian network for the implementation. 

 
Table 5. Nodes description for Network of Fig. 6 

Node Description  Node Description  

RC1 Power loss in coaxial cable DP1 Source forward reading 

RC2 Coaxial cable loose connection DP2 Bias forward reading  

RC3 Matcher fault  DP3 RF Matcher: Current 1  

RC4 MFC miscalibration  DP4 RF Matcher: Current 2  

RC5 Gas line leakage  DP5 RF Matcher: Bias shunt 

RC6 Gas cylinder empty  DP6 RF Probe: Voltage  

RC7 Gas control valve failure  DP7 RF Probe: Current  

RC8 Chamber wall deposition  DP8 RF Probe: Phase  

RC9 Particles  DP9 RF Probe: DC bias  

RC10 Chamber leak  DP10 TGV Current Position  

RC11 Gasket/O-ring wear out  DP11 Gas12 Flow  

M1  RF Module  DP12 Splitter flow total  

M2  Gas Delivery Module  DP13 Splitter flow 1  

M3  Process Chamber Module    

 

Table 6. Prior probabilities assigned to root nodes 

Node P (True) P (False) 

RC1 0.30 0.70 

RC2 0.10 0.90 

RC3 0.20 0.80 

RC4 0.40 0.60 

RC5 0.30 0.70 

RC6 0.10 0.90 

RC7 0.20 0.80 

RC8 0.20 0.80 

RC9 0.30 0.70 

RC10 0.35 0.65 

RC11 0.10 0.90 

 

 

Table 7. CPDS Assigned to Module Nodes 

Condition Probability 

RC1=True RC2=True RC3=True P (M1=True)=0.90 P (M1=False)=0.10 

RC1=True RC2=True RC3=False P (M1=True)=0.85 P (M1=False)=0.15 

RC1=True RC2=False RC3=True P (M1=True)=0.80 P (M1=False)=0.20 

RC1=True RC2=False RC3=False P (M1=True)=0.85 P (M1=False)=0.15 

RC1=False RC2=True RC3=True P (M1=True)=0.75 P (M1=False)=0.25 

RC1=False RC2=True RC3=False P (M1=True)=0.70 P (M1=False)=0.30 

RC1=False RC2=False RC3=True P (M1=True)=0.40 P (M1=False)=0.60 

RC1=False RC2=False RC3=False P (M1=True)=0.10 P (M1=False)=0.90 

 

Table 8. CPDS Assigned to Data Parameter Nodes 

Condition Probability 

M2=True P (DP1=True)=0.85 P (DP1=False)=0.15 

M2=False P (DP1=True)=0.15 
P 

(DP1=False)=0.85 
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significant evidence. The value of the threshold can be 

modified by engineering insight in application. Then 

these results were incorporated in the network as 

evidence of fault for each run. For example for Run 20, 

the evidence of fault is found for the data parameters Par 

1, 2, 3, 5, 9, 10, 11 and 13 (because they have value 

greater than fixed threshold of 0.45).  

After inserting these evidences to their corresponding 

nodes in the network, the beliefs are updated for all other 

nodes in the network. This involves performing inference 

(as explained in previous section) using the newly added 

evidences, at all nodes, stepwise going up till all beliefs 

are updated. The clustering algorithm was used for 

inference, which is the fastest exact inference algorithm 

[15]. At this point the root cause nodes at the top layer 

give the result of diagnostic inference. The node with 

highest value of belief among the root cause nodes would 

be the most probable root cause of the fault in a run. The 

inference results are represented in Table 11 where the 

maximum value of the belief for each run is highlighted. 

For example for Exp.1 the maximum probability is 0.57 

corresponding to MFC miscalibration, so according to 

this diagnosis result, the MFC miscalibration is found to 

be the most probable root cause for this run. This 

diagnosis is correct because Exp.1 was induced with the 

same fault. Similarly Exp.2, Exp.4 and Exp.5 are also 

diagnosed correctly. Exp.2 however, is diagnosed to have 

the MFC miscalibration as the root cause of fault which 

was actually induced with abnormal power delivered 

through bias RF cable. Four out of five faults were 

correctly diagnosed by the system, which shows that the 

proposed framework can be very effective to find out the 

root cause of faults that occur in semiconductor etch 

equipment. 

V. CONCLUSION 

A framework to model and diagnose the 

semiconductor equipment using BN has been presented 

by incorporating the historical information and expert 

knowledge to design the network's structure and behavior. 

It was shown that by dividing the equipment into 

subsystems, the cause and effect relationships between 

different modules can be effectively modeled which then 

Table 9. ERNN Architecture selected for each Parameter 

Par. NN Architecture Par. NN Architecture 

1 (1-12-1) 9 (1-6-1) 

2 (1-10-1) 10 (1-12-1) 

3 (1-10-1) 11 (1-8-1) 

4 (1-10-1) 12 (1-4-1) 

5 (1-8-1) 13 (1-12-1) 

6 (1-6-1) 14 (1-6-1) 

7 (1-12-1) 15 (1-8-1) 

8 (1-12-1)   

 

Table 10. ERNN results used for evidence in Bayesian 

Network 

  Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 

Par.1 0.557 1 0.268 0.412 0.652 

Par.2 0.756 0.385 0.245 0.976 0.863 

Par.3 0.493 1 0 0.352 0.859 

Par.4 0.179 0.441 0.459 0.765 1 

Par.5 0.515 0.577 0.634 0 0.446 

Par.6 0.413 0.309 0 0.771 1 

Par.7 0.125 0.071 0.62 0.452 1 

Par.8 0 0.092 0.016 0.624 1 

Par.9 0.709 0.422 0.665 0.061 1 

Par.10 0.697 1 0.222 0.97 0.867 

Par.11 0.492 1 0.447 0.467 0 

Par.12 0.337 0 1 0.196 0.926 

Par.13 0.462 0.04 0.603 0 0.194 

Par.14 0.002 0.003 1 0.017 0.002 

Par.15 0.285 0.515 0.306 0.748 0.88 

 

 

 
Table 11. Inference results for Diagnosis of faults 
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Exp.1 0.47 0.15 0.24 0.57 0.36 0.14 0.23 0.22 0.33 0.46 0.12 

Exp.2 0.37 0.12 0.22 0.44 0.31 0.11 0.21 0.22 0.32 0.43 0.11 

Exp.3 0.39 0.13 0.22 0.57 0.36 0.14 0.23 0.21 0.32 0.36 0.11 

Exp.4 0.48 0.15 0.24 0.44 0.31 0.11 0.21 0.22 0.34 0.47 0.12 

Exp.5 0.53 0.16 0.25 0.50 0.34 0.12 0.22 0.24 0.36 0.56 0.13 
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makes the fault diagnosis a more rational process. 

Utilizing this technique would result in faster and more 

accurate diagnosis which would then considerably 

increase the manufacturing yield. It can be concluded 

that Bayesian network can be very effective tool for 

diagnosing faults in semiconductor etch equipment. With 

Bayesian network based diagnosis systems being widely 

benefiting in other fields, active research in this area may 

one day lead to an accurate automated equipment 

diagnosis system that could revolutionize the traditional 

way of manually diagnosing faults in the semiconductor 

industry. 
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