• 제목/요약/키워드: Model-based Fault Diagnosis

검색결과 220건 처리시간 0.024초

Reliable Fault Diagnosis Method Based on An Optimized Deep Belief Network for Gearbox

  • Oybek Eraliev;Ozodbek Xakimov;Chul-Hee Lee
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.54-63
    • /
    • 2023
  • High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN model achieved high accuracy in diagnosis.

CNC에 실장한 고장진단 및 원격 서비스 시스템 (CNC Implemented Fault Diagnosis and Remote-Service System)

  • 김선호;김동훈;김도연;박영우;윤원수
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.89-97
    • /
    • 2003
  • The faults diagnosis of machine tool, which is controlled by CNC(Computer Numerical Control) and PLC(Programmable Logic Controller), is generally based on ladder diagram of PLC because sequential controls for CNC and servo motor are mostly processed in PLC. However, when fault is occurred, a searching of logical relationship for fault reasons is required a lot of diagnosis experiences and times because PLC program has step structure. In this paper, FDS(Fault Diagnosis System) is developed and implemented to machine tool with open architecture controller in order to find the reason of fault fast and correctly. The diagnosed reasons for fault are remote serviced on web through developed RSS(Remote Service System). The operationability and usefulness of developed system are evaluated on specially manufactured machine tool with open architecture CNC. The results of this research can be the model of remote monitoring and fault diagnosis system of machine tool with open architecture CNC.

PLC기반 차체조립라인의 안전감시를 위한 진단프로그램 생성에 관한 연구 (Auto-Generation of Diagnosis Program of PLC-based Automobile Body Assembly Line for Safety Monitoring)

  • 박창목
    • 대한안전경영과학회지
    • /
    • 제12권2호
    • /
    • pp.65-73
    • /
    • 2010
  • In an automated industry PLC plays a central role to control the manufacturing system. Therefore, fault free operation of PLC controlled manufacturing system is essential in order to maximize a firm's productivity. On the contrary, distributed nature of manufacturing system and growing complexity of the PLC programs presented a challenging task of designing a rapid fault finding system for an uninterrupted process operation. Hence, designing an intelligent monitoring, and diagnosis system is needed for smooth functioning of the operation process. In this paper, we propose a method to continuously acquire a stream of PLC signal data from the normal operational PLC-based manufacturing system and to generate diagnosis model from the observed PLC signal data. Consequently, the generated diagnosis model is used for distinguish the possible abnormalities of manufacturing system. To verify the proposed method, we provided a suitable case study of an assembly line.

3 계 슬라이딩 모드 관측기 기반 로봇 고장 진단 (Third Order Sliding Mode Observer based Robust Fault Diagnosis for Robot Manipulators)

  • 반 미엔;강희준;서영수
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.669-672
    • /
    • 2012
  • This paper investigates an algorithm for robust fault diagnosis in robot manipulators. The TOSM (Third Order Sliding Mode observer) provides both theoretically exact observation and unknown fault identification without filtration. The EOI (Equivalent Output Injections) of the TOSM observers can be used as residuals for the problem of fault diagnosis and to identify the unknown faults. The obtained fault information can be used for fault detection, isolation as well as fault accommodation to the self-correcting failure system. The computer simulation results for a PUMA 560 robot are shown to verify the effectiveness of the proposed strategy.

Model-based fault diagnosis methodology using neural network and its application

  • Lee, In-Soo;Kim, Kwang-Tae;Cho, Won-Chul;Kim, Jung-Teak;Kim, Kyung-Youn;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.127.1-127
    • /
    • 2001
  • In this paper we propose an input/output model based fault diagnosis method to detect and isolate single faults in the robot arm control system. The proposed algorithm is functionally composed of three main parts-parameter estimation, fault detection, and isolation, When a change in the system occurs, the errors between the system output and the estimated output cross a predetermined threshold, and once a fault in the system is detected, and in this zone the estimated parameters are transferred to the fault classifier by ART2(adaptive resonance theory 2) neural network for fault isolation. Since ART2 neural network is an unsupervised neural network fault classifier does not require the knowledge of all possible faults to isolate the faults occurred in the system. Simulations are carried out to evaluate the performance of the proposed ...

  • PDF

개방형 컨트롤러를 갖는 공작기계에 적합한 진단 및 신호점검사례 (A Case Study on Diagnosis and Checking for Machine-Tools with an OAC)

  • 김동훈;송준엽;김경돈;김찬봉;김선호;고광식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.292-297
    • /
    • 2004
  • The conventional computerized numerical controller (CNC) of machine tools has been increasingly replaced by a PC-based open architecture CNC (OAC) which is independent of the CNC vendor. The OAC and machine tools with OAC led the convenient environment where it is possible to implement user-defined application programs efficiently within CNC. Tis paper proposes a method of operational fault cause diagnosis which is based on the status of programmable logic controller (PLC) in machine tools with OAC. The operational fault is defined as a disability state occurring during normal operation of machine tools. The faults are occupied by over 70% of all faults and are also unpredictable as most of them occur without any warning. Two diagnosis models, the switching function (SF) and the step switching function (SSF), are propose in order to diagnose the fault cause quickly and exactly. The cause of an occurring fault is logically diagnosed through a fault diagnosis system (FDS) using the diagnosis models. A suitable interface environment between CNC and develope application modules is constructed in order to implement the diagnostic functions in the CNC domain. The diagnosed results were displayed on a CNC monitor for machine operators and provided to a remote site through a web browser. The result of his research could be a model of the fault cause diagnosis and the remote monitoring for machine tools with OAC.

  • PDF

Dual-loss CNN: A separability-enhanced network for current-based fault diagnosis of rolling bearings

  • Lingli Cui;Gang Wang;Dongdong Liu;Jiawei Xiang;Huaqing Wang
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.253-262
    • /
    • 2024
  • Current-based mechanical fault diagnosis is more convenient and low cost since additional sensors are not required. However, it is still challenging to achieve this goal due to the weak fault information in current signals. In this paper, a dual-loss convolutional neural network (DLCNN) is proposed to implement the intelligent bearing fault diagnosis via current signals. First, a novel similarity loss (SimL) function is developed, which is expected to maximize the intra-class similarity and minimize the inter-class similarity in the model optimization operation. In the loss function, a weight parameter is further introduced to achieve a balance and leverage the performance of SimL function. Second, the DLCNN model is constructed using the presented SimL and the cross-entropy loss. Finally, the two-phase current signals are fused and then fed into the DLCNN to provide more fault information. The proposed DLCNN is tested by experiment data, and the results confirm that the DLCNN achieves higher accuracy compared to the conventional CNN. Meanwhile, the feature visualization presents that the samples of different classes are separated well.

CNC 실장 고장진단 및 원격 서비스 기술 개발 (Development of fault diagnosis and tole-service technology for CNC implementation)

  • 김동훈;김선호;김도연;윤원수;김찬봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2002
  • The diagnosis of faults of machine tool, which is controlled by CNC and PLC, is generally based on ladder diagram of PLC. Because sequential controls for CNC and servo motor are mostly processed in PLC. However, when fault is occurred, a searching for logical relation to fault reasons is required a lot of fault experiences and times, because PLC program has step structure. In this paper, FDS(Fault Diagnosis System) is developed and implemented to machine tool with open architecture controller in order to find the reason of fault lastly and correctly. The diagnosed reasons for fault are tele-serviced on web through developed RSS(Remote Service System). The operationability and usefulness of developed system are evaluated on specially manufactured machine tool with open architecture CNC. The results of this research can be the model of remote monitoring and fault diagnosis system of machine tool with open architecture CNC.

  • PDF

확률기법을 이용한 유도전동기의 고장진단 알고리즘 연구 (Probability theory based fault detection and diagnosis of induction motor system)

  • 김광수;조현철;송창환;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.228-229
    • /
    • 2008
  • This paper presents stochastic methodology based fault diction and diagnosis algorithm for induction motor systems. First, we construct probability distribution model from healthy motors and then probability distribution for faulty motors is recursively calculated by means of the proposed probability estimation. We measure motor current with hall sensors as system state. The estimated probability is compared to the model to generate a residue signal which is utilized for fault detection and diagnosis, that is, where a fault is occurred. We carry out real-time induction motor experiment to evaluate efficiency and reliability of the proposed approach.

  • PDF

온라인 확률분포 추정기법을 이용한 확률모델 기반 유도전동기의 고장진단 시스템 (Stochastic Model based Fault Diagnosis System of Induction Motors using Online Probability Density Estimation)

  • 조현철;김광수;이권순
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1847-1853
    • /
    • 2008
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis to demonstrate convergence property of the proposed estimation by using statistical convergence and system stability theory. We apply our fault diagnosis approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.