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Third Order Sliding Mode Observer based Robust
Fault Diagnosis for Robot Manipulators
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Abstract: This paper investigates an algorithm for robust fault diagnosis in robot manipulators. The TOSM (Third Order Sliding
Mode observer) provides both theoretically exact observation and unknown fault identification without filtration. The EOI
(Equivalent Output Injections) of the TOSM observers can be used as residuals for the problem of fault diagnosis and to identify the
unknown faults. The obtained fault information can be used for fault detection, isolation as well as fault accommodation to the self-
correcting failure system. The computer simulation results for a PUMA 560 robot are shown to verify the effectiveness of the

proposed strategy.
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I. INTRODUCTION

Various approaches to fault diagnosis in nonlinear systems
as well as robot manipulators have been proposed recently.
The observer based on normal measurable variables have been
approached [1,2]. By using neural network learning, robust
fault detection scheme for nonlinear system [3], and for robot
manipulators [4,5] have been developed. The basic idea of
these methods is to design the robust fault diagnosis by using
the model based method, and to use neural network (NN) to
approximate the faults involved in the observer design. In [6],
a neural-fuzzy model is used to obtain the model based of the
unknown dynamic system. One of the best advantages of
robust fault diagnoses is that they are not only able to detect
the occurrence of a fault, but also can be provided the fault
information which is useful for compensating the affect of the
faults in the dynamic systems.

Due to important feature of the sliding mode in the system
uncertainties such as handling disturbances and modeling
uncertainties through the concepts of sliding surface design
and equivalent control, SM techniques have been studied for
observer states by many researchers [7,8]. However, in SM
applications, chattering is the major drawback in the practical
realization. To avoid chattering, different approaches have
been proposed [9-11]. The most widely used in practical
applications to eliminate the chattering are using higher order
sliding mode [12,13]. Especially, second order sliding mode
[14], for instance, sub-optimal algorithm [15], super-twisting
algorithm have been proposed for states observer [16,17].
However, in the second order sliding mode approach, the
unknown input is constructed from the discontinuous term
which provides the undesired chattering. Hence, to reduce the
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chattering, the filtration is required in these designs to obtain
the unknown input. On the other hand, the filtration provides
the delay and error that reduce the fault estimation
performance. To avoid filtration which is required of second
order sliding mode, the third order sliding mode observer is
investigated [18,19]. In [20], the third-order sliding mode
observer is designed to estimate the velocities and external
perturbation. The obtained estimation of an external
perturbation is used to design the controller to compensate the
effect of external perturbation in the system.

This paper extends earlier results of our previous work [19],
the third-order sliding mode based robust fault diagnosis
scheme is designed. The fault information is constructed
directly from the equivalent output injection (EOI) of SM
without filtration. The obtained fault estimation is used for
fault detection, isolation as well as fault accommodation. To
verify the effectiveness of the third order sliding mode to fault
diagnosis, the simulation is performed on PUMA 560 robot.
The remainder of this paper is organized as follows: in section
II, the robot dynamics and faults are investigated and
problems are given. In section III, the fault diagnosis scheme
is designed. The simulation results for a PUMA 560 robot is
described in section I'V. Section V includes some conclusions.

II. PROBLEM FORMULATION
Let consider a robot dynamics is described by

G=M (It V(4.9 -G+ y(t-T)¢(q.¢.1) (1)

where g eR" is the state vector, 7 is the torque produced
by actuators, M(g)eR”" 1is the initial matrix, V,(g,q)

e R" is the Coriolis and centripetal force, and G(g) € R" is
the vector of gravity terms, the term ¢(q,q,7) is a vector
represents the faults which is composed of actuator faults
and/or component faults in robot manipulator, y(1—7,)€R"

represents the time profile of the faults, and 7, is the time of
occurrence of the faults.
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We let the fault time profile y(-) be a diagonal matrix of

the form
y(t=T,) = diag{y,(t=T,).7,(t =T ).t (t=T))}  (2)

where y; is a function of fault that represents the fault
affecting the ith state equation.
The faults with time profiles modeled are given

0 ift<T,

}/[(t_T,'):{ —, (t-T;) . (3)
1= s,

where ¢; > 0 represents the unknown fault evolution rate.
Small values of ¢; represent incipient faults, while large values
of ¢; characterize abrupt fault.

The objective of this paper is to design a robust fault
diagnosis scheme that allows the use of equivalent output
injection of sliding mode for detecting and isolating any faults
#(q,q,7) 1in robotic systems.

II1. FAULT DIAGNOSIS OBSERVER
In this section, the fault diagnosis scheme is designed based
on the second order sliding mode and third order sliding mode
observers.
With x,=ge®R" and x,=¢eR", the robot dynamics
as expressed in eq. (1) can be written in state space form as

X =x, @
XZ = f(X],XZ,T) + 7/(1 - T/')¢(¢Ia777)
where f(x,,x,,7) =M (@)[z =V, (¢.9)q — G(q)].
Based on eq. (4), the second order sliding mode observer is
designed as
A A A2, ~
X, =x,+a, |xI —x,l sign(x, —x,) )

5&2 = f(x,x,,u)+ a,sign(x, _5‘}|)

where o; is the sliding gains.
Substituting eq. (4) into eq. (5), the estimation error is

obtained:

< ~ A2, A

X =X - |x1 _X1| sign(x, —X,)

1

(6)
2 :d(xl’)2255‘?2)+¢(qaq-’t)_a2‘gign(xl _)‘e])

=

where ¥=x-% and d(x,%,,%,) = f(x,x,,7)— f(x,%,,7).
To guarantee the stability and finite time convergence of the
observer scheme, the sliding gains should be chosen as:
a>¢"

™

o, > 3¢ +20
9

Where ¢" is the upper bound of the fault: ¢(q,q4,7) <¢".
After convergence of the differentiator, the observer states
in eq. (5) (X,, x,) converges to the true states in eq. (4) (x, x,).

The second term in eq. (6) can be written as

2,y = a,sign(x, — %) = §(q,4,1) ®

|ol

RS

From the eq. (8), the fault function is estimated by z, =
a,sign(x, —x,), which is the discontinuous function so that to
reconstruct the unknown input from the discontinuous term, a
low-pass filter is needed. However, using the low-pass filter
provides the time delay and error that decreases the
performance of the systems. To overcome this drawback, the
third order sliding mode observer is proposed as

A A A 23 . A

X =x,+a, |x1 fxl| sign(x, —X,)
1/2 - "
sign(x, —x,)+z ©

fcz = f(xl,)ACZ,T)+0!1 |'£1 _)Acz
Z=q,sign(s, — %)
where ¢; is the sliding mode gain to be designed.

From the egs. (4) and (9), the state estimation error in the
presence of the fault (£ > 7 ) is defined

. A 23, A
X=X -, |x1 _x1| sign(x, —X,)
12

sign(;c] -%)-2 (10)

% =d(n, 5, %)+ 9(0.4.0 - o[£ - £,
z=aq,sign(x, — X,)

After convergence of the differentiator the estimation states
(%,, x,) converges to the true states (x,x,), the second

term of the eq. (10) can be written as:

1/2

sign();c1 -x)-z=0 (1D

5‘2 =¢(q,9,1)— |£1 _)22

when the differentiator converges to zero, the second term of

. 1/2 .
the eq. (11) (¢, |fc, —%,| sign(% —%,)) converges to zero.

2

Then, from the eq. (11), the fault function can be reconstructed
as

2=¢(q.4-1) (12)

From egs. (11) and (12), Z is a continuous function so that
the fault can be obtained directly from the equivalent of the
sliding mode without filtration.

The obtained fault information can be used for fault
detection and isolation as well as fault accommodation to self-
correct the effect of fault in robot system.

IV. SIMULATION RESULTS

In order to verify the effectiveness of the proposed strategy,
its overall procedure is simulated for a PUMAS560 robot where
the first three joints are used. PUMA robot is well known
industrial robot that has been widely used in industrial
application and robotic research. Its explicit dynamic model
and its parameter values are given in Ref. [20]. The sliding
gains are selected as o, =1.1L, o, =1.5L and «,=19L

where we select L =3.
First, in normal operation, the robot is controlled to track

the desired trajectory. The three equivalent output injection of
third order sliding mode keep stay around zero. It is shown in
Fig. 1 where there is no presence of fault.

To verify the performance of the third order sliding mode in
terms of fault detection and isolation, we supply some
intentional faults to the system. In first case, we consider a fault
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Fig. 1. Equivalent output injections( Z ) at each joint from the third
order sliding mode observer in normal operation of the robot.
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Fig. 2. Equivalent output injections of at each joint from the third
order sliding mode observer with a fault of ¢,.
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Fig. 3. Comparison of the given fault function with its

corresponding equivalent output injections at each joint from
the third order sliding mode observer with the fault of ¢,.

#,=[4,0,0]" to occur at #=10s. It means we have a fault

only in the first joint. From the results of EOIs in Fig. 2, we
can see that the first output of sliding mode remains around
zero when ¢<10s and jumps to 4 when ¢>10s, while the
second and third outputs of sliding mode still remain around
zero. It verifies that the fault ¢ 1is correctly detected and

isolated.

To further show the effectiveness of the proposed algorithm,
we devise the arbitrary fault which could cover various
mathematical functions:

2¢; +2q, +0.54,
#, =| 0.9¢, +0.06¢,+0.9sin(g;) 13)
-1.2¢, —1.8sin(g,) — 0.9sin(q;)

This fault is assumed to occur at # = 10s. Fig. 3 shows the
time histories of the fault function and the equivalent output
injections of the sliding mode observer in each joint. Fig. 2
and Fig. 3 show how well the proposed algorithm works for
the fault detection and isolation. In there, the assumed fault
functions are very closely identified so that there are both
almost no error and almost no time delay.
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V. CONCLUSIONS

A robust fault diagnosis algorithm in robotic systems by
using a third order sliding mode observer is proposed. The
fault information can be obtained directly from the equivalent
output injection of the SM observer without filtration for fault
detection and isolation. Through the computer simulations for
a 3-DOF PUMA 560 robot, the proposed algorithm has the
capability to identify the supplied fault functions with both
almost no error and almost no time delay. They show
effectiveness of the proposed algorithm.
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