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Abstract: This paper investigates an algorithm for robust fault diagnosis in robot manipulators. The TOSM (Third Order Sliding 
Mode observer) provides both theoretically exact observation and unknown fault identification without filtration. The EOI 
(Equivalent Output Injections) of the TOSM observers can be used as residuals for the problem of fault diagnosis and to identify the 
unknown faults. The obtained fault information can be used for fault detection, isolation as well as fault accommodation to the self-
correcting failure system. The computer simulation results for a PUMA 560 robot are shown to verify the effectiveness of the 
proposed strategy. 
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I. INTRODUCTION 
Various approaches to fault diagnosis in nonlinear systems 

as well as robot manipulators have been proposed recently. 
The observer based on normal measurable variables have been 
approached [1,2]. By using neural network learning, robust 
fault detection scheme for nonlinear system [3], and for robot 
manipulators [4,5] have been developed. The basic idea of 
these methods is to design the robust fault diagnosis by using 
the model based method, and to use neural network (NN) to 
approximate the faults involved in the observer design. In [6], 
a neural-fuzzy model is used to obtain the model based of the 
unknown dynamic system. One of the best advantages of 
robust fault diagnoses is that they are not only able to detect 
the occurrence of a fault, but also can be provided the fault 
information which is useful for compensating the affect of the 
faults in the dynamic systems.  

Due to important feature of the sliding mode in the system 
uncertainties such as handling disturbances and modeling 
uncertainties through the concepts of sliding surface design 
and equivalent control, SM techniques have been studied for 
observer states by many researchers [7,8]. However, in SM 
applications, chattering is the major drawback in the practical 
realization. To avoid chattering, different approaches have 
been proposed [9-11]. The most widely used in practical 
applications to eliminate the chattering are using higher order 
sliding mode [12,13]. Especially, second order sliding mode 
[14], for instance, sub-optimal algorithm [15], super-twisting 
algorithm have been proposed for states observer [16,17]. 
However, in the second order sliding mode approach, the 
unknown input is constructed from the discontinuous term 
which provides the undesired chattering. Hence, to reduce the 

chattering, the filtration is required in these designs to obtain 
the unknown input. On the other hand, the filtration provides 
the delay and error that reduce the fault estimation 
performance. To avoid filtration which is required of second 
order sliding mode, the third order sliding mode observer is 
investigated [18,19]. In [20], the third-order sliding mode 
observer is designed to estimate the velocities and external 
perturbation. The obtained estimation of an external 
perturbation is used to design the controller to compensate the 
effect of external perturbation in the system.  

This paper extends earlier results of our previous work [19], 
the third-order sliding mode based robust fault diagnosis 
scheme is designed. The fault information is constructed 
directly from the equivalent output injection (EOI) of SM 
without filtration. The obtained fault estimation is used for 
fault detection, isolation as well as fault accommodation. To 
verify the effectiveness of the third order sliding mode to fault 
diagnosis, the simulation is performed on PUMA 560 robot. 
The remainder of this paper is organized as follows: in section 
II, the robot dynamics and faults are investigated and 
problems are given. In section III, the fault diagnosis scheme 
is designed. The simulation results for a PUMA 560 robot is 
described in section IV. Section V includes some conclusions. 

 
II. PROBLEM FORMULATION 

Let consider a robot dynamics is described by 
1( )[ ( , ) ( )] ( ) ( , , )m fq M q V q q q G q t T q qt g f t-= - - + -&& & & &  (1) 

where nqÎÂ  is the state vector, t  is the torque produced 
by actuators, ( ) n nM q ´ÎÂ  is the initial matrix, ( , )mV q q&  

nÎÂ  is the Coriolis and centripetal force, and ( ) nG q ÎÂ  is 
the vector of gravity terms, the term ( , , )q qf t&  is a vector 
represents the faults which is composed of actuator faults 
and/or component faults in robot manipulator, ( ) n

ft Tg - ÎÂ  
represents the time profile of the faults, and Tf  is the time of 
occurrence of the faults. 
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We let the fault time profile ( )g ×  be a diagonal matrix of 
the form 

{ }1 2( ) ( ), ( ),..., ( )f f f n ft T diag t T t T t Tg g g g- = - - -  (2) 

where γi  is a function of fault that represents the fault 
affecting the ith state equation. 

The faults with time profiles modeled are given 

 ( )

0
( )

1 i f

f

i f t T
f

if t T
t T

e if t Tjg - -

<ìï- = í
- ³ïî

 (3) 

where φi > 0 represents the unknown fault evolution rate. 
Small values of φi represent incipient faults, while large values 
of φi characterize abrupt fault. 

The objective of this paper is to design a robust fault 
diagnosis scheme that allows the use of equivalent output 
injection of sliding mode for detecting and isolating any faults 

( , , )q qf t&  in robotic systems. 
 

III. FAULT DIAGNOSIS OBSERVER 
In this section, the fault diagnosis scheme is designed based 

on the second order sliding mode and third order sliding mode 
observers. 

With 1
nx q= ÎÂ  and 2 ,nx q= ÎÂ&  the robot dynamics 

as expressed in eq. (1) can be written in state space form as 

 1 2

2 1 2( , , ) ( ) ( , , )f

x x
x f x x t T q qt g f t
=
= + -

&
& &  (4) 

where 1
1 2( , , ) ( )[ ( , ) ( )]mf x x M q V q q q G qt t-= - -& & . 

Based on eq. (4), the second order sliding mode observer is 
designed as 

 
1/ 2

1 2 1 1 1 1 1

2 1 2 2 1 1

ˆ ˆ ˆ ˆ( )

ˆ ˆ( , , ) ( )

x x x x sign x x

x f x x u sign x x

a

a

= + - -

= + -

&

&
 (5) 

where αi is the sliding gains. 
Substituting eq. (4) into eq. (5), the estimation error is 

obtained: 

 
1/ 2

1 2 1 1 1 1 1

2 1 2 2 2 1 1

ˆ ˆ( )

ˆ ˆ( , , ) ( , , ) ( )

x x x x sign x x

x d x x x q q t sign x x

a

f a

= - - -

= + - -

&% %
&% % &

 (6) 

where ˆx x x= -%  and 1 2 2ˆ( , , )d x x x% = 1 2 1 2ˆ( , , ) ( , , ).f x x f x xt t-  
To guarantee the stability and finite time convergence of the 

observer scheme, the sliding gains should be chosen as: 

 2

1

2 2
1

3 2

a f

fa f
a

+

+
+

>

> +
 (7) 

Where f +  is the upper bound of the fault: ( , , ) .q qf t f +<&  
After convergence of the differentiator, the observer states 

in eq. (5) ( 1̂,x 2x̂ ) converges to the true states in eq. (4) (x1, x2). 
The second term in eq. (6) can be written as 

 2 1 1̂( ) ( , , )eqz sign x x q q ta f= - = &  (8) 

From the eq. (8), the fault function is estimated by eqz =  
2 1 1̂( ),sign x xa -  which is the discontinuous function so that to 

reconstruct the unknown input from the discontinuous term, a 
low-pass filter is needed. However, using the low-pass filter 
provides the time delay and error that decreases the 
performance of the systems. To overcome this drawback, the 
third order sliding mode observer is proposed as 

 

2/3

1 2 2 1 1 1 1

1/ 2

2 1 2 1 1 2 1 2

0 1 2

ˆ ˆ ˆ ˆ( )
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x f x x x x sign x x z

z sign x x
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t a

a

= + - -

= + - - +

= -

&

& & &

&&

 (9) 

where αi is the sliding mode gain to be designed. 
From the eqs. (4) and (9), the state estimation error in the 

presence of the fault ( ft T³ ) is defined 

2/3

1 2 2 1 1 1 1

1/ 2

2 1 2 2 1 1 2 1 2

0 1 2

ˆ ˆ( )

ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( )
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x x x x sign x x

x d x x x q q t x x sign x x z

z sign x x

a

f a

a

= - - -

= + - - - -

= -
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& &&% % &

&&

 (10) 

After convergence of the differentiator the estimation states 

1̂( ,x 2ˆ )x  converges to the true states 1 2( , ),x x  the second 
term of the eq. (10) can be written as: 

1/ 2

2 1 1 2 1 2ˆ ˆ ˆ ˆ ˆ( , , ) ( ) 0x q q t x x sign x x zf a= - - - - º& &&% &  (11) 

when the differentiator converges to zero, the second term of 

the eq. (11) (
1/ 2

1 1 2 1 2ˆ ˆ ˆ ˆ( )x x sign x xa - -& & ) converges to zero. 

Then, from the eq. (11), the fault function can be reconstructed 
as 

 ˆ ( , , )z q q tf= &  (12) 

From eqs. (11) and (12), ẑ  is a continuous function so that 
the fault can be obtained directly from the equivalent of the 
sliding mode without filtration. 

The obtained fault information can be used for fault 
detection and isolation as well as fault accommodation to self-
correct the effect of fault in robot system. 

 
IV. SIMULATION RESULTS 

In order to verify the effectiveness of the proposed strategy, 
its overall procedure is simulated for a PUMA560 robot where 
the first three joints are used. PUMA robot is well known 
industrial robot that has been widely used in industrial 
application and robotic research. Its explicit dynamic model 
and its parameter values are given in Ref. [20]. The sliding 
gains are selected as 0 1.1 ,La = 1 1.5La =  and 2 1.9La =  
where we select 3.L =  

First, in normal operation, the robot is controlled to track 
the desired trajectory. The three equivalent output injection of 
third order sliding mode keep stay around zero. It is shown in 
Fig. 1 where there is no presence of fault.  

To verify the performance of the third order sliding mode in 
terms of fault detection and isolation, we supply some 
intentional faults to the system. In first case, we consider a fault 
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그림 1. 로봇의 정상 동작 시, 각 관절에서 3계 슬라이딩 모
드 관측기로부터 얻어진 EOI( ẑ ) 

Fig.  1. Equivalent output injections( ẑ ) at each joint from the third 
order sliding mode observer in normal operation of the robot. 
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그림 2. 고장함수 1f 이 존재할 때, 각 관절에서 3계 슬라이딩 

모드 관측기로부터 얻어진 EOI ( ẑ ). 
Fig.  2. Equivalent output injections of at each joint from the third 

order sliding mode observer with a fault of 1.f  
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(a) The given fault function and its corresponding EOI at joint 1. 
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(b) The given fault function and its corresponding EOI at joint 2. 
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(c) The given fault function and its corresponding EOI at joint 3. 

그림 3. 고장함수 2f 이 존재할 때, 각 관절에서 3계 슬라이

딩 모드 관측기로부터 얻어진 고장함수 추정값(EOI)
과 주어진 고장함수 비교. 

Fig.  3. Comparison of the given fault function with its 
corresponding equivalent output injections at each joint from 
the third order sliding mode observer with the fault of 2.f  

 

1 [4, 0, 0]Tf =  to occur at 10 .t s=  It means we have a fault 

only in the first joint. From the results of EOIs in Fig. 2, we 
can see that the first output of sliding mode remains around 
zero when 10t s<  and jumps to 4 when 10 ,t s³  while the 
second and third outputs of sliding mode still remain around 
zero. It verifies that the fault 1f  is correctly detected and 
isolated.  

To further show the effectiveness of the proposed algorithm, 
we devise the arbitrary fault which could cover various 
mathematical functions:  

 

3
1 3 2

2 2 2 3

3 1 3

2 2 0.5
0.9 0.06 0.9sin( )

1.2 1.8sin( ) 0.9sin( )

q q q
q q q

q q q
f

é ù+ +
ê ú

= + +ê ú
ê ú- - -ë û

&
& &  (13) 

This fault is assumed to occur at t = 10s. Fig. 3 shows the 
time histories of the fault function and the equivalent output 
injections of the sliding mode observer in each joint. Fig. 2 
and Fig. 3 show how well the proposed algorithm works for 
the fault detection and isolation. In there, the assumed fault 
functions are very closely identified so that there are both 
almost no error and almost no time delay. 



반 미엔, 강 희 준, 서 영 수 

 

672

V. CONCLUSIONS 
A robust fault diagnosis algorithm in robotic systems by 

using a third order sliding mode observer is proposed. The 
fault information can be obtained directly from the equivalent 
output injection of the SM observer without filtration for fault 
detection and isolation. Through the computer simulations for 
a 3-DOF PUMA 560 robot, the proposed algorithm has the 
capability to identify the supplied fault functions with both 
almost no error and almost no time delay. They show 
effectiveness of the proposed algorithm. 
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