• Title/Summary/Keyword: Model-based Compensation

Search Result 524, Processing Time 0.031 seconds

Compensation techniques for experimental errors in real-time hybrid simulation using shake tables

  • Nakata, Narutoshi;Stehman, Matthew
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1055-1079
    • /
    • 2014
  • Substructure shake table testing is a class of real-time hybrid simulation (RTHS). It combines shake table tests of substructures with real-time computational simulation of the remaining part of the structure to assess dynamic response of the entire structure. Unlike in the conventional hybrid simulation, substructure shake table testing imposes acceleration compatibilities at substructure boundaries. However, acceleration tracking of shake tables is extremely challenging, and it is not possible to produce perfect acceleration tracking without time delay. If responses of the experimental substructure have high correlation with ground accelerations, response errors are inevitably induced by the erroneous input acceleration. Feeding the erroneous responses into the RTHS procedure will deteriorate the simulation results. This study presents a set of techniques to enable reliable substructure shake table testing. The developed techniques include compensation techniques for errors induced by imperfect input acceleration of shake tables, model-based actuator delay compensation with state observer, and force correction to eliminate process and measurement noises. These techniques are experimentally investigated through RTHS using a uni-axial shake table and three-story steel frame structure at the Johns Hopkins University. The simulation results showed that substructure shake table testing with the developed compensation techniques provides an accurate and reliable means to simulate the dynamic responses of the entire structure under earthquake excitations.

Adaptive Time Delay Compensation Process in Networked Control System

  • Kim, Yong-Gil;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.34-46
    • /
    • 2016
  • Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

A Hybrid Static Compensator for Dynamic Reactive Power Compensation and Harmonic Suppression

  • Yang, Jia-qiang;Yang, Lei;Su, Zi-peng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.798-810
    • /
    • 2017
  • This paper presents a combined system of a small-capacity inverter and multigroup delta-connected thyristor switched capacitors (TSCs). The system is referred to as a hybrid static compensator (HSC) and has the functions of dynamic reactive power compensation and harmonic suppression. In the proposed topology, the load reactive power is mainly compensated by the TSCs. Meanwhile the inverter is meant to cooperate with TSCs to achieve continuous reactive power compensation, and to filter the harmonics generated by nonlinear loads and the TSCs. First, the structure and mathematical model of the HSC are discussed Then the control method of the HSC is presented. An improved reduced order generalized integrator (ROGI)-based selective current control method is adopted in the inverter to achieve high-performance reactive and harmonic current compensation. Meanwhile, a switch control strategy is proposed to implement precise and fast switching of the TSCs and to avoid changing the time delay needed by the conventional switch strategy. Experiments are implemented on a 20 KVA HSC prototype and the obtained results verify the validity of the proposed HSC system.

Performance Analysis of Channel Compensation and Channel Coding Techniques based on Measured Maritime Wireless Channel in VHF-band Ship Ad-hoc Network (VHF 대역 선박 간 애드혹 네트워크에서 실측 해상채널에 기반한 채널 보상과 채널 부호화 기법의 성능분석)

  • Jeon, Kwang-Hyun;Hui, Bing;Chang, Kyung-Hi;Kim, Seung-Geun;Kim, Sea-Moon;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.517-529
    • /
    • 2011
  • In this paper, the parameters of the RTT (Radio Transmission Techniques) for SANET (Ship Ad-hoc NETwork), which is considered for the next generation maritime communication systems, are set up. A channel model has been analyzed based on the practical measured maritime wireless channel in VHF (Very-High Frequency) for SANET system. Also, by considering the frame structure including preamble, guard time and pilots for both single and multi-carrier systems, the BER (Bit Error Rate) performances are evaluated and analyzed in the aspects of channel compensation and channel coding techniques. Based on the simulation results, optimal modulation & coding schemes are suggested for SANET. That is, in single-carrier system by using differential modulation schemes, channel compensation is not necessary. However, channel coding is helpful to achieve additional gain. On the other hand, when 16-QAM modulation is employed in multi-carrier system, the implementation of both channel compensation and channel coding techniques show huge performance gain for various of K values, which are related to different maritime environments, and the rolling effects of wave.

Speech Enhancement Based on Feature Compensation for Independently Applying to Different Types of Speech Recognition Systems (이기종 음성 인식 시스템에 독립적으로 적용 가능한 특징 보상 기반의 음성 향상 기법)

  • Kim, Wooil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2367-2374
    • /
    • 2014
  • This paper proposes a speech enhancement method which can be independently applied to different types of speech recognition systems. Feature compensation methods are well known to be effective as a front-end algorithm for robust speech recognition in noisy environments. The feature types and speech model employed by the feature compensation methods should be matched with ones of the speech recognition system for their effectiveness. However, they cannot be successfully employed by the speech recognition with "unknown" specification, such as a commercialized speech recognition engine. In this paper, a speech enhancement method is proposed, which is based on the PCGMM-based feature compensation method. The experimental results show that the proposed method significantly outperforms the conventional front-end algorithms for unknown speech recognition over various background noise conditions.

Noisy Speech Recognition Based on Noise-Adapted HMMs Using Speech Feature Compensation

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.

Source Current Control Strategy of Active Power Filters for Unbalanced Load Compensation in Three-Phase Four-Wire Distribution Networks

  • Wang, Lei;Han, Xiaoqing;Meng, Runquan;Ren, Chunguang;Wang, Qi;Zhang, Baifu
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1545-1554
    • /
    • 2018
  • This paper proposes a modified control strategy to improve the performance of three-phase four-leg shunt active power filters (APFs) for the compensation of three phase unbalanced loads. Unbalanced current cannot be obtained accurately by a harmonic detector due to the lower frequency. The proposed control strategy eliminates conventional harmonic detectors by directly regulating the source current. Therefore, the computational complexity is greatly reduced and the performance of the APF is improved. A mathematic model has been developed based on the source currents. The corresponding controllers have been designed based on the sinusoidal internal model principle. The proposed control strategy can guarantee excellent compensation performance and stable operation after an extreme disturbance such as a short circuit fault. In addition, the proposed technique can selectively compensate specific harmonics. A 50kVA prototype APF is implemented in the laboratory to validate the feasibility and performance of the proposed control strategy.

Missile Adaptive Control using T-S Fuzzy Model (T-S 퍼지 모델을 이용한 유도탄 적응 제어)

  • 윤한진;박창우;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.129-132
    • /
    • 2001
  • In this paper, in order to control uncertain missile autopilot, an adaptive fuzzy control(AEC) scheme via parallel distributed compensation(PDC) is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy model. Moreover adaptive law is designed so that the plant output tracks the stable reference model(SRM), From the simulations results, we can conclude that the suggested scheme can effectively solve the control problems of uncertain missile systems based on T-S fuzzy model.

  • PDF

A Study on Effective Cell Model for CDMA Cellular System Simulation (CDMA 셀룰라 시스템 시뮬레이션을 위한 효과적인 셀 모델에 관한 연구)

  • 윤상흠;권용석
    • Journal of Information Technology Applications and Management
    • /
    • v.10 no.4
    • /
    • pp.149-157
    • /
    • 2003
  • In this paper, we propose a ceil model based on the wraparound method to simulate the hierarchical CDMA cellular system in an effective and efficient manner. The model uses the minimal number of cells by considering only one tier but compensates the interference by other cells in the higher tiers sufficiently. Various numerical tests demonstrate that the proposed model can be used to simulate the complex and large-sized hierarchical cellular system effectively. Especially, the interference compensation can reduce the required simulation time to 1/100 for 10 tiers cellular system.

  • PDF

Analysis of 3D reconstructed images based on signal model of plane-based computational integral imaging reconstruction technique (평면기반 컴퓨터 집적 영상 복원 기술의 신호모델을 이용한 3D 복원 영상 분석)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.121-126
    • /
    • 2009
  • Plane-based computational integral imaging (CIIR) provides the reconstruction of depth-dependent 3D plane images. However, it has problem degrading the resolution of reconstructed images due to the artifact noise according to the depth. In this paper, to overcome this problem, a signal model for plane-based CIIR is explain. Also the compensation process is introduced to remove the noise caused from CIIR. Computational experiments show that we analyze the characteristics of noise in the reconstructed image of 2D Gaussian image and the high-resolution images can be obtained by using the compensation process.