• Title/Summary/Keyword: Model-Reference Adaptive Control

Search Result 380, Processing Time 0.033 seconds

Model Reference Adaptive Control of Systems with Actuator Failures through Fault Diagnosis

  • Choi, Jae-Weon;Lee, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.4-125
    • /
    • 2001
  • The problem of recongurable ight control is investigated, focusing on model reference adaptive control(MRAC) through imprecise fault diagnosis. The method integrates the fault detection and isolation(FDI) scheme with the model reference adaptive control, and can be implemented on-line and in real-time. The algorithm can cope with the fast varying parameters. The Simulation results demonstrate the ability of reconguration to maintain the stability and acceptable performance after a failure.

  • PDF

A Robust Discrete-Time Model Reference Adaptive Control in the Presence of Bounded Disturbances (제한된 외란하에서의 강인한 이산 시간 모델 추종 적응 제어)

  • 이호진;함운철;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1618-1624
    • /
    • 1988
  • In this paper, a robust discrete model reference adaptive controller is proposed using a generalized model reference adaptive algorithm for single-input single-output discrete systems. A signal dependent time-varying dead-zone is employed in a generalized adaptive control structure. This adaptive controller is shown to assure the boundedness of the signals of the system even in the presence of bounded external disturbance.

  • PDF

A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller (모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어)

  • Kim, Seung-Woo;Seo, Ki-Sung;Cho, Young-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.

Observer-Based Robust Fault Diagnosis and Reconfigurable Adaptive Control for Systems with Unknown Inputs (미지입력을 포함한 시스템의 관측기 기반 견실고장진단 및 재구성 적응제어)

  • 최재원;이승우;서영수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.928-934
    • /
    • 2002
  • A natural way to cope with fault tolerant control (FTC) problems is to modify the control parameters according to an online identification of the system parameters when a fault occurs. However. due to not only difficulties Inherent to the online multivariable identification in closed-loop systems, such as modeling errors, noise or the lack of excitation signals, but also long time requirement to identify the post-fault system and implemeutation of control problems during the identification process, we propose an alternative approach based on the observer-based fault detection and isolation (FDI) and model reference adaptive control (MRAC). The proposed robust fault diagnosis method is based on a bank of observers. We also propose a model reference adaptive control with changeable reference models according to the occurred faults. Simulation results of a flight control example show the validity and applicability of the proposed algorithms.

Adaptive Feed-forward Control with Reference Model for Position Controller (기준모델과 피드포워드 적응제어를 사용한 위치제어기)

  • 윤명하;최남열;이치환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.413-418
    • /
    • 2002
  • This paper proposed a feed-forward adaptive position controller that is robust for variable Inertia. The control system consists of PI Position controller, feed-forward and model reference adaptive control. A parameter g(t) of the feed-forward adaptive position controller is adapted by using both the reference model speed and position error. So it improves the transient response and reduces the settling time. And normalization function Is used to make linear adaptation time. The validity of the feed-forward adaptive controller is confirmed by simulation results.

Adaptive control with multiple model (using genetic algorithm)

  • Kwon, Seong-Chul;Park, Juhyun;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.331-334
    • /
    • 1996
  • It is a well-known problem that the adaptive control has a poor transient response. In order to improve this problem, the scheme that model-reference adaptive control (MRAC) uses the genetic algorithm (GA) in the search for parameters is proposed. Use genetic algorithm (GA) in the searching for controller's parameters set and conventional gradient method for fine tuning. And show the reduction of the oscillations in transient response comparing with the conventional MRAC.

  • PDF

An Adaptive Speed Control of a Diesel Engine by means of a Model Matching method and the Nominal Model Tracking Method (모델 매칭법과 규범모델 추종방식에 의한 디젤기관의 적응속도제어)

  • 유희한;소명옥;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.609-616
    • /
    • 2003
  • The purpose of this study is to design the adaptive speed control system of a marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. The authors proposed already a new method to determine efficiently the PID control Parameters by the Model Matching Method. typically taking a marine diesel engine as a non-oscillatory second-order system. But. actually it is very difficult to find out the exact model of a diesel engine. Therefore, when diesel engine model and actual diesel engine are unmatched as an another approach to promote the speed control characteristics of a marine diesel engine, this paper Proposes a Model Reference Adaptive Speed Control system of a diesel engine, in which PID control system for the model of a diesel engine is adopted as the nominal model and Fuzzy controller and derivative operator are adopted as the adaptive controller.

Speed-Sensorless Control of an Induction Motor using Model Reference Adaptive Fuzzy System (기준 모델 적응 퍼지 시스템을 이용한 유도전동기의 속도 센서리스 제어)

  • Choi, Sung-Dae;Kang, Sung-Ho;Ko, Bong-Woon;Nam, Hoon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2064-2066
    • /
    • 2002
  • This paper proposes Model Reference Adaptive Fuzzy System(MRAFS) using Fuzzy Logic Controller(FLC) as a adaptive laws in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. MRAFS estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error as the input of FLC. The computer simulation is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF

Adaptive Control Incorporating Neural Network for a Pneumatic Servo Cylinder (공압 서보실린더의 신경회로망 결합형 적응제어)

  • Jang Yun Seong;Cho Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.88-95
    • /
    • 2005
  • This paper presents a design scheme of model reference adaptive control incorporating a Neural Network for a pneumatic servo system. The parameters of discrete-time model of plant are estimated by using the recursive least square method. Neural Network is utilized in order to compensate the nonlinear nature of plant such as compressibility of air and frictions present in cylinder. The experiment of a trajectory tracking control using the proposed control scheme has been performed and its effectiveness has been proved by comparing with the results of a model reference adaptive control.

Output feedback-based model reference adaptive control for MIMO plants

  • Takahashi, Masanori;Mizumoto, Ikuro;Iwai, Zenta
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.181-184
    • /
    • 1996
  • This paper deals with the design problem of model reference adaptive controllers for MIMO plants with unknown orders. A design scheme for an adaptive control system based on CGT theorem, which has hierarchical structures derived from backstepping strategies, is proposed for MIMO plants with unknown orders but with known relative MacMillan degrees(relative degrees for SISO plants). It is also shown that all the signals in the resulting control system are bounded, and that the asymptotic tracking is achieved in the case where reference inputs are step.

  • PDF